Home Technology Morphological Optimization of Graphite in Spheroidal Cast Iron with a Modulus of 4 cm used in the Manufacture of Wind Turbine Hubs
Article
Licensed
Unlicensed Requires Authentication

Morphological Optimization of Graphite in Spheroidal Cast Iron with a Modulus of 4 cm used in the Manufacture of Wind Turbine Hubs

  • G. F. Vander Voort , J. F. Álvarez-Antolín and J. Asensio-Lozano
Published/Copyright: June 29, 2018
Become an author with De Gruyter Brill

Abstract

The aim of this study was the morphological optimization of graphite by generating knowledge able to determine which metallurgical manufacturing factors have a significant influence on the geometry of the graphite precipitated in spheroidal grey cast irons with a mass coefficient of 4, used in the manufacture of wind turbine hubs. The research study was conducted on an industrial scale applying a fractional Design of Experiments (DoE) with 7 factors, 16 experiments and resolution IV. The following constitute the most noteworthy novel results obtained in the study. The effect of La on the graphite “counts” is strengthened by pre-inoculation of the molten iron bath with SiC. Furthermore, graphite counts can be increased under low carbon equivalent conditions using post-inoculants containing Zr. Finally, high values of Mn lead to a reduction in the size of the precipitated graphite.

Kurzfassung

Ziel dieser Untersuchung war die Optimierung der Graphitmorphologie durch Erkenntnisse, anhand derer ermittelt werden kann, welche Faktoren der metallurgischen Fertigung einen maßgeblichen Einfluss auf die Geometrie des Graphits ausüben, der in Sphäro-Grauguss (Gusseisen mit Kugelgraphit) mit einem Massenkoeffizienten von 4 ausgeschieden wird. Diese Art Grauguss kommt in der Herstellung von Naben in Windkraftanlagen zum Einsatz. Die Forschungsstudie wurde in industriellen Maßstab unter Anwendung statistischer Versuchsplanung (Design of Experiments, DoE) mit teilfaktoriellen Versuchsplänen mit 7 Faktoren, 16 Versuchen und Auflösung IV durchgeführt. Im Folgenden werden die nennenswertesten in der Untersuchung neu erzielten Ergebnisse genannt. Die Wirkung von La auf die Graphit-„Counts“ wird durch Vorimpfung des Eisenschmelzbads mit SiC verstärkt. Zudem kann die Anzahl der Graphit-Counts bei einem niedrigen Kohlenstoffäquivalent unter Verwendung von Nachimpfmitteln, die Zr enthalten, erhöht werden. Schlussendlich führen große Mengen an Mn zur Reduzierung der Größe des ausgeschiedenen Graphits.


Übersetzung: E. Engert


References / Literatur

[1] Tartaglia, J.; Gundlach, R.; Goodrich, G.: Int. J. Metalcast.8 (2014) 4, 738. 10.1007/BF03355592Search in Google Scholar

[2] Pero-Sanz, J.A.: Fundiciones Férreas, Dossat, Madrid, Spain, 1994, p. 87 ffSearch in Google Scholar

[3] Shiraki, N.; Usui, Y.; Kanno, T.: Mater Trans.57 (2016) 3, 379384. 10.2320/matertrans.FM2015841Search in Google Scholar

[4] Fras, E.; Lopez, H.: Inter Metalcast4 (2010) 3, 3561. 10.1007/BF03355497Search in Google Scholar

[5] Shiraki, N.; Watanabe, T.; Kanno, T.: Mater Trans.56 (2015) 12, 20102016. 10.2320/matertrans.F-M2015826Search in Google Scholar

[6] Pero-Sanz, J.A.: Fundiciones Férreas, Dossat, Madrid, Spain, 1994, p. 86 ffSearch in Google Scholar

[7] Prakash, P.; Mytri, V. D.; Hiremath, P. S.: Microscopy and Microanalysis.17 (2011) 6, 896902. 10.1017/S1431927611011986Search in Google Scholar PubMed

[8] Prat, A.; Tort-Martorell, X.; Grima, P.; Pozueta, L.: Métodos Estadísticos, 2nd edn.Universidad Politécnica de Barcelona, Barcelona, Spain, 1997, p. 172 ffSearch in Google Scholar

[9] Montgomery, D. C.; Runger, G. C.: Probabilidad y Estadística aplicada a la Ingeniería. Mc Graw-Hill, México D.F, México, 1996, p. 764 ffSearch in Google Scholar

[10] Pero-Sanz, J.A.: Fundiciones Férreas, Dossat, Madrid, Spain, 1994, p. 23 ffSearch in Google Scholar

[11] Pero-Sanz, J.A.: Fundiciones Férreas, Dossat, Madrid, Spain, 1994, p. 30 ffSearch in Google Scholar

[12] Lacaze, J.; Boudot, A.; Gerval, V.; Oquab, D.; Santos, H.: The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron. Metall. Mater. Trans. A.28 (1997) 10, 2015202510.1007/s11661-997-0158-7Search in Google Scholar

[13] Fras, E.; Lopez, H.; Kawalec, M.; Gorny, M.: Metals.5 (2015) 1, 256288. 10.3390/met5010256Search in Google Scholar

[14] Hazotte, A.; Santos, H.; Lacaze, J.: Int J Cast Metal Res.16 (2003) 1–3, 155160. 10.1179/136404603225006846Search in Google Scholar

[15] Vasko, A.; Trsko, L.; Konecna, R.: Fatigue behaviour of synthetic nodular cast irons. Metalurgija.54 (2015) 1, 1922.Search in Google Scholar

[16] Edalati, K.; Akhlaghi, F.; NihAhmadabadi, A.: Int J Cast Metal Res.17 (2004) 3, 147151. 10.1179/136404604225014819Search in Google Scholar

[17] Edalati, K.; Akhlaghi, F.; NihAhmadabadi, A.; J Mater Process Tech.160 (2005) 2, 183187. 10.1016/j.jmatprotec.2004.06.007Search in Google Scholar

[18] Avdušinović, H.; Gigović-Gekić, A.; Ćubela, D.; Sunulahpašić, R.; Mujezinović, N.: Mater Tehnol.49 (2015) 5, 833836. 10.17222/mit.2014.248Search in Google Scholar

[19] Svensson, I. L.; Millberg, A.; Dioszegi, A.: Int J Cast Metal Res.16 (2003) 1–3, 2934. 10.1179/136404603225006648Search in Google Scholar

[20] Seidu, S. O.; Riposan, I.: Graphite characteristics in preconditioned and inoculated ductile irons for thin wall castings. Metal. Int.14 (2009), 7578.Search in Google Scholar

[21] Aberg, L. M.: T Indian I Metals.68 (2015) 6, 10071011. 10.1007/s12666 – 015–0635 – 4Search in Google Scholar

[22] Geier, G. F.; Bauer, W.; McKay, B. J.; Schumacher, P.: Mat Sci Eng A-Struct.413 (2005), 339345. 10.1016/j.msea.2005.08.159Search in Google Scholar

[23] Bockus, S.; Zaldarys, G.: Production of Ductile Iron Castings with Different Matrix Structure. Mater. Sci-Medzg.16 (2010) 4, 307310.Search in Google Scholar

[24] Onsoien, M. I.; Skaland, T.; Grong, O.: Mechanisms of graphite formation in ductile cast iron containing cerium and lanthanum. Int. J. Cast. Metal Res.11 (1999) 5, 319324.10.1080/13640461.1999.11819293Search in Google Scholar

[25] Pedersen, K. M.; Tiedje, N. S.: Int J Cast Metal Res.22 (2009) 1–4, 302305. 10.1179/136404609X367830Search in Google Scholar

[26] Montgomery, D. C.; Runger, G. C.: Probabilidad y Estadística aplicada a la Ingeniería. Mc Graw-Hill, México D.F, México, 1996, pp. 736766Search in Google Scholar

[27] Karsay, I. S.: Ductile Iron. The state of the art, Quebec Iron and Titanium Corp., Montreal, Canada, 1980, p. 68 ffSearch in Google Scholar

[28] Davis, J. R.: Cast Irons. Metallurgy and Properties of Ductile Irons. ASM International, Ohio, USA, 1996, p. 70 ffSearch in Google Scholar

[29] Ten, E. B.: Key Eng. Mater.457 (2011), 4347. 10.4028/www.scientific.net/KEM.457.43Search in Google Scholar

[30] Riposan, I.; Chisamera, M.; Stan, S.: Int J Metalcast.7 (2013) 1, 920. 10.1007/BF03355540Search in Google Scholar

Received: 2017-12-22
Accepted: 2018-04-26
Published Online: 2018-06-29
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110502/html
Scroll to top button