Process-Oriented Microstructure Evolution of Vss-V3Si-V5SiB2 Materials
-
M. Krüger
and B. Köppe-Grabow
Abstract
Vanadium silicide alloys are potentially interesting high temperature materials, since they combine high mechanical strength at temperatures of up to 1 000 °C with a low density. In this study, the microstructures of innovative V-Si-B high temperature materials are examined using different analytical methods. The selected V-9Si-13B model alloy was manufactured using a powder metallurgical process route as well as an ingot metallurgical process. The alloys show a vanadium solid solution phase as well as the high-strength silicide phases V3Si and V5SiB2. Especially for the powder metallurgically fabricated alloy, showing finely dispersed phases, the quantification of microstructural constituents is difficult. The phases, however, can be separated from one another via computer tomography.
Kurzfassung
Vanadium-Silizid-Legierungen stellen potentiell interessante Hochtemperaturwerkstoffe dar, da sie hohe mechanische Festigkeiten bei Temperaturen bis etwa 1 000 °C mit einer geringen Dichte kombinieren. In dieser Studie werden die Mikrostrukturen von neuartigen V-Si-B-Hochtemperaturwerkstoffen mittels verschiedener Analysemethoden untersucht, wobei die Herstellung der ausgewählten Modell-Legierung V-9Si-13B sowohl über eine pulvermetallurgische Prozessroute als auch über einen schmelzmetallurgischen Prozess erfolgt. Die Legierungen weisen eine Vanadium-Mischkristallphase sowie die hochfesten Silizidphasen V3Si und V5SiB2 auf. Insbesondere bei der pulvermetallurgisch hergestellten Legierungsvariante mit sehr fein verteilten Phasen ist die Quantifizierung der Gefügebestandteile schwierig. Mittels Computertomographie können die Phasen allerdings klar voneinander separiert werden.
References / Literatur
[1] Boyce, M.P., in: Gas Turbine Eng. Handb., 2012.Search in Google Scholar
[2] Yamaguchi, M.; Inui, H.; Ito, K.: Acta Mater.48 (2000) 307–322. 10.1016/S1359-6454(99)00301-8Search in Google Scholar
[3] Soboyejo, W.O.; Srivatsan, T.S. in:, Adv. Struct. Mater., CRC Press, 2006. 10.1201/9781420017465Search in Google Scholar
[4] Biermann, H.; Strehler, M.; Mughrabi, H.: Scr. Metall. Mater.32 (1995) 1405–1410. 10.1016/0956-716X(95)00179-YSearch in Google Scholar
[5] Mukherji, D.; Rösler, J.; Krüger, M.; Heilmaier, M.; Bölitz, M. C.; Völkl, R.; Glatzel, U.; Szentmiklosi, L.: Scr. Mater.66 (2012) 60–63. 10.1016/j.scriptamat.2011.10.007Search in Google Scholar
[6] Zenk, C.H.; Neumeier, S.; Stone, H.J.; Göken, M.: Intermetallics55 (2014) 28–39. 10.1016/j.intermet.2014.07.006Search in Google Scholar
[7] Bei, H.; George, E.P.: Acta Mater.53 (2005) 69–77. 10.1016/j.actamat.2004.09.003Search in Google Scholar
[8] Cao, F.; Pollock, T. M.: Acta Mater.55 (2007) 2715–2727. 10.1016/j.actamat.2006.12.009Search in Google Scholar
[9] Grammenos, I.; Tsakiropoulos, P.: Intermetallics18 (2010) 1524–1530. 10.1016/j.intermet.2010.04.004Search in Google Scholar
[10] Svetlov, I. L.: Inorg. Mater. Appl. Res.2 (2011) 307–315. 10.1134/S2075113311040125Search in Google Scholar
[11] Krüger, M.; Franz, S.; Saage, H.; Heilmaier, M.; Schneibel, J. H.; Jéhanno, P.; Böning, M.; Kestler, H.: Intermetallics16 (2008) 933–941. 10.1016/j.intermet.2008.04.015Search in Google Scholar
[12] Rioult, F. A.; Imhoff, S. D.; Sakidja, R.; Perepezko, J. H.: Acta Mater.57 (2009) 4600–4613. 10.1016/j.actamat.2009.06.036Search in Google Scholar
[13] Dimiduk, D. M.; Perepezko, J. H.: MRS Bull. (2003) 639–645. 10.1557/mrs2003.191Search in Google Scholar
[14] Perepezko, J. H.: Science326 (2009) 1068–1069. 10.1126/science.1179327Search in Google Scholar
[15] Alur, A.P.; Chollacoop, N.; Kumar, K.S.: Acta Mater.55 (2007) 961–974. 10.1016/j.actamat.2006.09.028Search in Google Scholar
[16] Heilmaier, M.; Krüger, M.; Saage, H.; Rösler, J.; Mukherji, D.; Glatzel, U.; Völkl, R.: Hüttner, R.; Eggeler, G.; Somsen, C.; Depka, T.; Christ, H.; Gorr, B.; Burk, S.: JOM61 (2009) 61–67. 10.1007/s11837-009-0106-7Search in Google Scholar
[17] Fukumoto, K.; Kuroyanagi, Y.; Kuroiwa, H.; Narui, M.; Matsui, H.: J. Nucl. Mater., 2011, 295–298. 10.1016/j.jnucmat.2010.12.073Search in Google Scholar
[18] Jiming, C.; Shaoyu, Q.; Lin, Y.; Zengyu, X.; Ying, D.; Ying, X.: J. Nucl. Mater.302 (2002) 135–142. 10.1016/S0022-3115(02)00775-4Search in Google Scholar
[19] Chung, H. M.; Loomis, B. A.; Smith, D. L.: J. Nucl. Mater.239 (1996) 139–156. 10.1016/S0022-3115(96)00676-9Search in Google Scholar
[20] Tyumentsev, A. N.; Korotaev, A. D.; Pinzhin, Y. P.; Ovchinnikov, S. V.; Ditenberg, I. A.; Shikov, A. K.; Potapenko, M. M.; Chernov, V. M.: J. Nucl. Mater.367–370 A (2007) 853–857. 10.1016/j.jnucmat.2007.03.070Search in Google Scholar
[21] Gui, L. J.; Liu, Y. L.; Wang, W.T.; Wei, Y.; Zhang, Y.; Lu, G. H.; Yao, J. E: Comput. Mater. Sci.77 (2013) 348–354. 10.1016/j.commatsci.2013.04.064Search in Google Scholar
[22] Bei, H.; George, E. P.; Kenik, E. A.; Pharr, G. M.: Z. Met.95 (2004) 505–512. 10.3139/146.017974Search in Google Scholar
[23] Krüger, M.: Scr. Mater.121 (2016) 75–78. 10.1016/j.scriptamat.2016.04.042Search in Google Scholar
[24] Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L. (Eds.), Binary Alloy Phase Diagrams, 2nd ed., ASM International, 1990.Search in Google Scholar
[25] Chaia, N.; David, N.; Mathieu, S.; Vilasi, M.: Intermetallics49 (2014) 115–120. 10.1016/j.intermet.2014.01.017Search in Google Scholar
[26] Smith, D. L.; Billone, M. C.; Natesan, K.: Int. J. Refract. Met. Hard Mater.18 (2000) 213–224. 10.1016/S0263-4368(00)00037-8Search in Google Scholar
[27] Shyrokov, V.V.; Vasyliv, C.B.; Shyrokov, O.V.: J. Nucl. Mater.394 (2009) 114–122. 10.1016/j.jnucmat.2009.07.009Search in Google Scholar
[28] Oda, S.; Kurishita, H.; Tsuruoka, Y.; Kobayashi, S.; Nakai, K.; Matsui, H.: J. Nucl. Mater.329–333 (2004) 462–466. 10.1016/j.jnucmat.2004.04.308Search in Google Scholar
[29] Williams, J.; Akinc, M.: Intermetallics6 (1998) 269–275. 10.1016/S0966-9795(97)00081-2Search in Google Scholar
[30] Smith, J.F.: Binary Phase Diagrams, American Society for Metals, Metals Park, 1987.Search in Google Scholar
[31] A.S.M.International, ASM Metals Handbook Vol. 3, Alloy Phase DiagramsSearch in Google Scholar
[32] Nunes, C. A.; de Lima, B. B.; Coelho, G. C.; Suzuki, P. A.: J. Phase Equilibria Diffus.30 (2009) 345–350. 10.1007/s11669-009-9533-ySearch in Google Scholar
[33] Krüger, M.; Jain, P.; Kumar, K.S.; Heilmaier, M.: Intermetallics48 (2014) 10–18. 10.1016/j.intermet.2013.10.025Search in Google Scholar
[34] Reis, D. A. P.; Nunes, C. A.; Capri Neto, A.: Rev. Bras. Apl. Vacuo26 (2007) 79–82.Search in Google Scholar
[35] Krüger, M.; Schmelzer, J.; Helmecke, M.: Metals6 (2016) 1–16. 10.3390/met6100241Search in Google Scholar
[36] Takata, N.; Sekido, N.; Takeyama, M.; Perepezko, J. H.; Follett-Figueroa, M.; Zhang, C.: Intermetallics72 (2016) 1–8. 10.1016/j.intermet.2016.01.001Search in Google Scholar
[37] Krüger, M.; Bolbut, V.; Gang, F.; Hasemann, G.: JOM68 (2016) 2811–2816. 10.1007/s11837-016-2096-6Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Process-Oriented Microstructure Evolution of Vss-V3Si-V5SiB2 Materials
- SEM and TEM Methods for the Quantification of Gamma-Prime Precipitates in Nickel Alloys
- Possibilities and Limits of Color Etching According to Klemm
- Failure Analysis
- 10.3139/147.110442
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Process-Oriented Microstructure Evolution of Vss-V3Si-V5SiB2 Materials
- SEM and TEM Methods for the Quantification of Gamma-Prime Precipitates in Nickel Alloys
- Possibilities and Limits of Color Etching According to Klemm
- Failure Analysis
- 10.3139/147.110442
- Meeting Diary/Veranstaltungskalender
- Meeting Diary