Home Technology Preparing Soft Magnetic Composites for Structural and Micromechanical Investigations
Article
Licensed
Unlicensed Requires Authentication

Preparing Soft Magnetic Composites for Structural and Micromechanical Investigations

  • T. Schwark , M. Müller , Y. Mine , T. Kreuter , O. Kraft and R. Schwaiger
Published/Copyright: May 29, 2017
Become an author with De Gruyter Brill

Abstract

Soft Magnetic Composites (SMC) consist of pure iron particles with an inorganic phosphorous coating and an additional iron oxide layer at the boundaries between them. It should be specified if the iron oxide is at the boundary of iron and the phosphorous coating or at the outer layer. It is assumed that it's a layer between the iron and the phosphorous layer. This combination of “ductile” and “brittle” constituents represents a challenge for preparing a specimen suitable for both microstructural and micromechanical studies. In particular for micromechanical tests, such as microcompression, microcantilever beam bending, micro tensile tests, and nanoindentation, the quality of the surface is critical. We demonstrate the effect of different surface preparation methods both on the microstructure and the mechanical properties. Mechanical polishing with two different end-polishing steps and combinations of mechanical polishing and ion-beam polishing are compared. Electron microscopy clearly showed the damaged or deformed surface layer of SMC specimens polished only mechanically, which significantly affected the mechanical properties as determined by nanoindentation. The microstructure of the particles was examined with electron backscatter diffraction and transmission electron microscopy revealing a subgrain structure within the particles. While the boundaries do not exhibit any cracks after indentation, the hardness of the boundaries and the adjacent material is clearly enhanced.

Kurzfassung

Weichmagnetische Kompositwerkstoffe (Soft Magnetic Composites, SMC) bestehen aus reinen Eisenpartikeln mit einer anorganischen Phosphorbeschichtung und einer zusätzlichen Eisenoxidschicht in der Grenzfläche. Diese Kombination aus „duktilen“ und „spröden“ Bestandteilen stellt eine Herausforderung bei der Präparation einer Probe dar, die sowohl für mikrostrukturelle als auch für mikromechanische Untersuchungen geeignet ist. Gerade für mikromechanische Tests wie Mikrodruck-, Mikrobiege- und Mikrozugversuche und Nanoindentation ist die Qualität der Oberfläche entscheidend. Wir zeigen die Auswirkungen verschiedener Methoden zur Oberflächenpräparation sowohl auf die Mikrostruktur als auch die mechanischen Eigenschaften. Dabei werden mechanisches Polieren mit zwei unterschiedlichen Endpoliturschritten mit Kombinationen von mechanischem Polieren und Ionenstrahlpolieren miteinander verglichen. Elektronenmikroskopie zeigte deutlich die beschädigte oder deformierte Oberflächenschicht von SMC-Proben, die nur mechanisch poliert wurden. Diese wirkte sich gemäß durchgeführter Nanoindentationsmessungen erheblich auf die mechanischen Eigenschaften aus. Die Mikrostruktur der Partikel wurde mittels Elektronenrückstreubeugung und Transmissionselektronenmikroskopie untersucht, wobei eine Subkornstruktur innerhalb der Partikel zum Vorschein kam. Während die Grenzschichten nach der Indentierung keine Risse aufweisen, ist die Härte der Grenzschichten und des benachbarten Materials deutlich höher.


Translation: M. Lackas


References / Literatur

[1] Oliver, W. C.; Pharr, G. M.: Journal of Materials Research, (1992) 7, 1564. 10.1557/JMR.1992.1564Search in Google Scholar

[2] Pathak, S.; Michler, J.; Wasmer, K.; Kalidindi, S.: J Mater Sci, (2012) 47, 815. 10.1007/s10853-011-5859-zSearch in Google Scholar

[3] Lian, J.; Garay, J. E.; Wang, J.: Scripta Materialia, (2007) 56, 1095. 10.1016/j.scriptamat.2007.02.027Search in Google Scholar

[4] Lucca, D. A.; Klopfstein, M. J.; Ghisleni, R.; Cantwell, G.: CIRP Annals – Manufacturing Technology, (2002) 51, 483.10.1016/S0007-8506(07)61566-2Search in Google Scholar

[5] Shen, L.; Liu, T.; Lv, P.: Polymer Testing, (2005) 24, 746. 10.1016/j.polymertesting.2005.04.004Search in Google Scholar

[6] Pathak, S.; Stojakovic, D.; Doherty, R.; Kalidindi, S. R.: Journal of Materials Research, (2009) 24, 1142. 10.1557/jmr.2009.0137Search in Google Scholar

[7] Fischer-Cripps, A. C.: Nanoindentation, SpringerNew York: (2004). 10.1007/978-1-4757-5943-3Search in Google Scholar

[8] Bureš, R. M. F.; Kollár, P.; Füzer, J.; Strečková, M.: Powder Metallurgy Progress, (2012) 12, 181.Search in Google Scholar

[9] Giménez, S.; Lauwagie, T.; Roebben, G.; Heylen, W.; Van der Biest, O.: Journal of Alloys and Compounds, (2006) 419, 299. 10.1016/j.jallcom.2005.09.053Search in Google Scholar

[10] Gilbert, I.; Bull, S.; Evans, T.; Jack, A.; Stephenson, D.; De Sa, A.: J Mater Sci, (2004) 39, 457. 10.1023/B:JMSC.0000011498.90378.7eSearch in Google Scholar

[11] Oikonomou, C.; Gutiérrez, D. C.; Monclús, M.; Molina-Adareguia, J. M.; Nyborg, L.: Assessment of the compacting and annealing process steps on the performance of finished Soft Magnetic Composite components, In T2 Euro PM2015 Proceedings, (2015).Search in Google Scholar

[12] Marcin Karbowiak, B. J.; Kapelski, D.; Przybylski, M.; Slusarek, B.: Influence of grain size on mechanical properties of soft magnetic composites, In Euro PM2012 – PM Functional Materials, (2012); Vol. 1, pp 387.Search in Google Scholar

[13] Yiping, D.; Youguang, G.; Jianguo, Z.: Investigation of motor topologies for SMC application, In Electrical Machines and Systems, 2007. ICEMS. International Conference on, (2007); pp 695.Search in Google Scholar

[14] Svensson, L.; Frogner, K.; Jeppsson, P.; Cedell, T.; Andersson, M.: Journal of Magnetism and Magnetic Materials, (2012) 324, 2717. 10.1016/j.jmmm.2012.03.049Search in Google Scholar

[15] Henaux, C.; Nogarede, B.; Harribey, D.: IEEE Transactions on Magnetics, (2012) 48, 2035. 10.1109/TMAG.2011.2181530Search in Google Scholar

[16] Lin, Z. W.; Zhu, J. G.; Zhong, J. J.; Johansen, T. H.; Wang, X. L.; Yu, W. Y.: Journal of Applied Physics, (2007) 101, 09K107.10.1063/1.2713706Search in Google Scholar

[17] Szabó, L.; Viorel, I.; Iancu, V.: Popa, D., Oradea University Annals, Electrotechnical Fascicle, (2004), 134.Search in Google Scholar

[18] O. Andersson, P. H.: Advances in Soft Magnetic Composites – Materials and Applications, In PowderMet2009, Las Vegas, (2009); pp 1.Search in Google Scholar

[19] Nguyen, H. G.; Hartmaier, G. D. A.: Grenze der Einsetzbarkeit eines weichmagnetischen Pulververbundwerkstoffes aus Sicht der Mechanik, In 19. Symposium Verbundwerkstoffe und Werkstoffverbunde, Karlsruhe, (2013).Search in Google Scholar

[20] Kim, K.; Watanabe, M.; Kuroda, S.; Kawano, N.: Materials Transactions, JIM, (2011) 52, 439.10.2320/matertrans.T-M2010826Search in Google Scholar

[21] N. Erdman, R. C., and Asahina, S.: Microscopy Today, (2006),Search in Google Scholar

[22] Asahina, S.; F. C., Sam M.Stevens and Terasaki, O.: MC 2009, Instrumentation and Methodology, (2009) 1,Search in Google Scholar

[23] Radi, Z.; Havancs, K.; x00E; Kal, S.; cska; Baris, A.: Surface polishing and slope cut by parallel ar ion beams for high resolution electron backscatter diffraction measurements, In 2014 International Conference on Nanoscience and Nanotechnology, (2014); pp 1. 10.1109/ICONN.2014.6965245Search in Google Scholar

[24] Carter, G.; Nobes, M. J.; Katardjiev, I. V.: Vacuum, (1993) 44, 303. 10.1016/0042-207X(93)90174-9Search in Google Scholar

[25] Mine, Y.; Hirashita, K.; Matsuda, M.; Otsu, M.; Takashima, K.: Corrosion Science, (2011) 53, 529. 10.1016/j.corsci.2010.10.019Search in Google Scholar

[26] Mine, Y.; Hirashita, K.; Takashima, H.; Matsuda, M.; Takashima, K.: Materials Science and Engineering: A, (2013) 560, 535. 10.1016/j.msea.2012.09.099Search in Google Scholar

[27] Mine, Y.; Takashima, H.; Matsuda, M.; Takashima, K.: Materials Science and Engineering: A, (2014) 618, 359. 10.1016/j.msea.2014.09.027Search in Google Scholar

[28] Mine, Y.; Fujisaki, H.; Matsuda, M.; Takeyama, M.; Takashima, K.: Scripta Materialia, (2011) 65, 707. 10.1016/j.scriptamat.2011.07.012Search in Google Scholar

[29] Levin, M. C.: Charakterisierung von weichmagnetischen Pulververbundwerkstoffen für den Einsatz in Traktionsantrieben, Verlag Dr. Hut: (2014).Search in Google Scholar

[30] Pharr, G. M.; Herbert, E. G.; Gao, Y.: Annual Review of Materials Research, (2010) 40, 271. 10.1146/annurev-matsci-070909-104456Search in Google Scholar

Received: 2016-08-19
Accepted: 2017-03-28
Published Online: 2017-05-29
Published in Print: 2017-06-19

© 2017, Carl Hanser Verlag, München

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110424/html
Scroll to top button