Fretting Induced Fracture Damage in a Ti6Al4V Total Hip Prosthesis
-
M. Friedrich
Abstract
Within the body, hip implants are subjected both to mechanical and corrosive effects. In narrow crevices such as in the moving surfaces of modular femoral stems, even in the case of proven materials, complex interactions occur between mechanically and corrosively induced material damage, which can strongly influence the service reliability of the implant itself. After almost a year in service, the modular femoral stem presented in this article, fractured. The stem, which had been implanted into a somewhat less than active patient, fractured possibly as a result of defective implantation and diagnosed loosening, causing fretting and corrosion which eventually resulted in the fatigue fracture of the modular hip stem. The failure analysis presented, carried out as part of an IMWF student research project at the MPA University of Stuttgart, was initiated to investigate the damage found at a number of different levels and using various different investigatory techniques in order to determine the cause of the failure and to suggest guidelines to aid in the investigation of other similar failures.
Kurzfassung
Hüftimplantate unterliegen im Körper neben mechanischen auch korrosiven Beanspruchungen. In engen Spalten, wie den Trennfugen modularer Hüftschäfte, treten selbst bei bewährten Werkstoffen komplexe Wechselwirkungen zwischen mechanisch und korrosiv induzierten Werkstoffschädigungen auf, welche die Betriebsfestigkeit des Implantats stark beeinflussen können. Nach knapp einem Jahr Tragezeit wurde der hier vorgestellte Bruch des modularen Hüftschaftes einer körperlich wenig aktiven Patientin durch einen möglichen Montagefehler und eine diagnostizierte Lockerung mechanisch begünstigt, wobei Fretting und Korrosionsprozesse den Dauerbruch innerhalb der modularen Verbindung einleiteten. Die vorgestellte Schadensanalyse, die auf einer Studienarbeit am IMWF mit der MPA Universität Stuttgart basiert, soll die vorgefundenen Schädigungen auf verschiedenen Betrachtungsebenen mit unterschiedlichen Untersuchungsmethoden darstellen, um die Schadensursache zu ermitteln und Anhaltspunkte für die Untersuchung ähnlicher Schäden zu bieten.
References / Literatur
[1] Willi, R.; Rieker, C.; Thomsen, M.; Thomas, P.: Implantate, in: AE-Manual der Endoprothetik Hüfte und Hüftrevisionen, Springer, Heidelberg, 2012, 47–8210.1007/978-3-642-14646-6_3Search in Google Scholar
[2] Effenberger, H.; Imhof, M.; Witzel, U.; Rehart, S.: Zementfreie Hüftschäfte Aktueller Stand, in: Der Orthopäde34 (2005) 5, 477–50210.1007/s00132-005-0800-2Search in Google Scholar
[3] Eichinger, S.; Forst, R.: Analyse der Revisionskonzepte von modularen und nichtmodularen Systemen, in: Modulare Revisionsendoprothetik des Hüftgelenks, Springer, Heidelberg, 2005, 86–9610.1007/3-540-26803-0_9Search in Google Scholar
[4] Breme, J.; Eisenbarth, E.; Biehl, V.: Titanlegierungen in der Medizintechnik, in: Titan und Titanlegierungen, Wiley-VCH, Weinheim, 2002, 431–46210.1002/9783527611089.ch16Search in Google Scholar
[5] Budinski, K.G.: Tribological properties of titanium alloys, in: Wear151 (1991) 2, 203–21710.1016/0043-1648(91)90249-tSearch in Google Scholar
[6] Akrawi, H.; Maga, M.; Shetty, A.; Ng, A.: A modified technique to extract fractured femoral stem in revision total hip arthroplasty: A report of two cases, in: International Journal of Surgery Case Reports5 (2014), 361–36410.1016/j.ijscr.2014.04.003Search in Google Scholar PubMed PubMed Central
[7] Smetana, T.: Untersuchungen zum Übertragungsverhalten biegebelasteter Kegel- und Zylinderpressverbindungen, Shaker, Aachen, 2001Search in Google Scholar
[8] Mersch, D.: Optimierung der Gestaltfestigkeit von Konussteckverbindungen bei modular aufgebauten Revisionshüftendoprothesen aus TiAl6Nb7, Hieronymus, München, 1996Search in Google Scholar
[9] DIN EN ISO 5832-3: 2012: Chirurgische Implantate – Metallische Werkstoffe-Teil 3: Titan 6-Aluminium 4-Vanadium KnetlegierungSearch in Google Scholar
[10] Hallab, N. J.: Fretting Corrosion of Orthopedic Implants, in: Comprehensive Biomaterials Volume 6: Biomaterials and Clinical Use, Elsevier, Amsterdam, 2011, 89–9610.1016/b978-0-08-055294-1.00205-1Search in Google Scholar
[11] Gilbert, J. L.; Jacobs, J. J.: The Mechanical and Electrochemical Processes Associated With Taper Fretting Crevice Corrosion: A Review, in: Modularity of Orthopedic Implants, American Society for Testing and Materials, Conshohocken, 1997, 45–5910.1520/stp12020sSearch in Google Scholar
[12] Goldberg, J. R.; Buckley, C. A.; Jacobs, J. J.; Gilbert, J. L.: Corrosion Testing of Modular Hip Implants, in: Modularity of Orthopedic Implants, American Society for Testing and Materials, Conshohocken, 1997, 157–17610.1520/stp12030sSearch in Google Scholar
[13] Huot Carlson, J. C.; Van Citters, D. W.; Currier, J. H.; Bryant,A. M.; Mayor, M. B.; Collier, J. P.: Femoral Stem Fracture and In Vivo Corrosion of Retrieved Modular Femoral Hips, in: The Journal of Arthroplasty27 (2012) 7, 1389–1396.e1 10.1016/j.arth.2011.11.007Search in Google Scholar PubMed
[14] Crowninshield, R. D.; Maloney, W. J.; Wentz, D. H.; Levine, D. L.: The Role of Proximal Femoral Support in Stress Development Within Hip Prostheses, in: Clinical Orthopaedics and Related Research, 420 (2004) 3, 176–18010.1097/00003086-200403000-00024Search in Google Scholar PubMed
[15] Wroblewski, B. M.: The Mechanism of Fracture of the Femoral Prosthesis in Total Hip Replacement, in: International Orthopaedics3 (1979), 137–13910.1007/BF00266883Search in Google Scholar
[16] Turgay, E.; Schmitt, J.: Analyses of Prosthesis Stem Failures in Noncemented Modular Hip Revision Prostheses, in: The Journal of Arthroplasty26 (2011) 4, 665.e7–665.e12Search in Google Scholar
[17] Grupp, T. M.; Weik, T.; Bloemer, W.; Knaebel, H.-P.: Modular titanium alloy neck adapter failures in hip replacement-failure mode analysis and influence of implant material, in: BMC Musculoskeletal Disorders11 (2010) 310.1186/1471-2474-11-3Search in Google Scholar PubMed PubMed Central
[18] Lutynski, C.; Simansky, G.; McEvily, A. J.: Fretting Fatigue of Ti-6Al-4V Alloy, in: Materials Evaluation Under Fretting Conditions, American Society for Testing and Materials, Philadelphia, 1982, 150–16410.1520/STP29402SSearch in Google Scholar
[19] Bill, R.C.: Review of Factors That Influence Fretting Wear, in: Materials Evaluation Under Fretting Conditions, American Society for Testing and Materials, Philadelphia, 1982, 165–18210.1520/STP29403SSearch in Google Scholar
[20] Waterhouse, R. B. (Ed.): Fretting Fatigue, London: Applied Science Publishers, 1981Search in Google Scholar
[21] Lakstein, D.; Eliaz, N.; Levi, O.; Backstein, D.; Kosashvili, Y.; Safir, O.; Gross, A. E.: Fracture of Cementless Femoral Stems at the Mid-Stem Junction in Modular Revision Hip Arthroplasty Systems, in: The Journal of Bone and Joint Surgery93 (2011), 57–6510.2106/JBJS.I.01589Search in Google Scholar PubMed
© 2016, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Microstructures of Friction Surfaced Coatings – a TEM Study
- Copper-Coated Roman Coins – Subferrati
- Fretting Induced Fracture Damage in a Ti6Al4V Total Hip Prosthesis
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Microstructures of Friction Surfaced Coatings – a TEM Study
- Copper-Coated Roman Coins – Subferrati
- Fretting Induced Fracture Damage in a Ti6Al4V Total Hip Prosthesis
- Meeting Diary/Veranstaltungskalender
- Meeting Diary