Home Fracture Analysis of High Strength Steel Fastener Used in Separation System of a Satellite Launch Vehicle
Article
Licensed
Unlicensed Requires Authentication

Fracture Analysis of High Strength Steel Fastener Used in Separation System of a Satellite Launch Vehicle

  • Sushant K. Manwatkar
    Sushant K. Manwatkar
    Material Characterization Division, Materials and Metallurgy Group, Vikram Sarabhai Space Centre, Trivandrum-695 022, India. e-mail: susarla.murty@gmail.com
    Search for this author in:
    , S.V.S. Narayana Murty
    S.V.S. Narayana Murty
    Material Characterization Division, Materials and Metallurgy Group, Vikram Sarabhai Space Centre, Trivandrum-695 022, India. e-mail: susarla.murty@gmail.com
    Search for this author in:
    and P. Ramesh Narayanan
    P. Ramesh Narayanan
    Material Characterization Division, Materials and Metallurgy Group, Vikram Sarabhai Space Centre, Trivandrum-695 022, India. e-mail: susarla.murty@gmail.com
    Search for this author in:
Published/Copyright: February 25, 2016
Become an author with De Gruyter Brill

Abstract

High strength 3.5Ni-1.5Cr-0.5Mo (AFNOR 35NCD16) steel fasteners are widely used for various space applications. In one such application, failure was observed in one of the M4X8L fasteners used in the band clip assembly of a separation system. The band assembly was preloaded to the specified value of load as per the assembly procedure and the fastener was torqued to the specified value of 2.3Nm with loctite. The fastener was found to be separated into two pieces at head-shank junction under assembly load conditions. Detailed analysis of the cracked fastener indicated the failure to be due to the hydrogen induced stress corrosion cracking (HI-SCC). This paper presents the details of the failure of the fastener.

Kurzfassung

Hochfeste Stahlverbindungselemente, 3,5Ni- 1,5Cr-0,5Mo (AFNOR 35NCD16), finden im Bereich der Raumfahrt vielfältig Anwendung. Bei einer solchen Anwendung wurde bei einem in einer aus Spannband und Bügeln bestehenden Baugruppe eines Trennsystems eingesetzten M4X8L Verbindungselement ein Versagen festgestellt. Das Spannband wurde entsprechend dem Montageverfahren mit dem spezifizierten Belastungswert vorgespannt. Das Verbindungselement wurde mit dem spezifizierten Drehmoment von 2,3 Nm unter Verwendung von Loctite angezogen. Im Lastzustand zerbrach das Verbindungselement am Übergang von Kopf und Schaft der Baugruppe in zwei getrennte Teilstücke. Eine eingehende Untersuchung des gebrochenen Verbindungselements ergab ein Versagen durch wasserstoffinduzierte Spannungsrisskorrosion (H-SpRK). Diese Arbeit beschreibt das Versagen des Verbindungselements im Detail.


Übersetzung: E. Engert


References / Literatur

[1] Roberge, P. R.: Handbook of corrosion engineering. McGraw-Hill, 1999, 67.Search in Google Scholar

[2] Villalba, E.; Atrends, A.: Hydrogen embrittlement and rock bolt stress corrosion cracking. Engineering Failure Analysis16 (2009), 164175. 10.1016/j.engfailanal.2008.01.004Search in Google Scholar

[3] Jha, A. K.; Manwatkar, S. K.; Sreekumar, K.: Hydrogen-induced intergranular stress corrosion cracking (HI-IGSCC) of 0.35C-3.5Ni-1.5Cr-0.5Mo steel fastener. Engineering Failure Analysis17 (2010), 777786. 10.1016/j.engfailanal.2009.10.007Search in Google Scholar

[4] Lynch, S. P.: Comments on a unified model of environmental assisted cracking. Scripta Materialia61 (2009) 331334. 10.1016/j.scriptamat.2009.02.031Search in Google Scholar

[5] Becker, W. T.; Shipley, R. J.; editors: Failure analysis and prevention, ASM handbook, Vol. 11. ASM International, 2002, 24572459.Search in Google Scholar

[6] ASTM Standard, B 766 – 86 (Reapproved 2008). Standard Specification for Electrodeposited Coatings of Cadmium. ASTM International, West Conshohocken, PA, USA.Search in Google Scholar

[7] Carter, T. J.; CornishL.A.: Hydrogen in metals. Engineering Failure Analysis8 (2001), 113121. 10.1016/S1350-6307(99)00040-0Search in Google Scholar

[8] Elboujdaini, M.; Revie, R. W.: Metallurgical factors in stress corrosion cracking (SCC) and hydrogen induced cracking (HIC). J Solid state electrochem (2009), 13: 1091109910.1007/s10008-009-0799-0Search in Google Scholar

[9] Woodtli, J.; Kieselbach, R.: Damage due to hydrogen embrittlement and stress corrosion cracking. Engineering Failure Analysis7 (2000), 427450. 10.1016/S1350-6307(99)00033-3Search in Google Scholar

[10] Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R. P.: Corrosion of steel in concrete. Wiley-VCH2004. 155170.10.1002/3527603379Search in Google Scholar

Received: 2015-04-21
Accepted: 2015-05-20
Published Online: 2016-02-25
Published in Print: 2016-03-15

© 2016, Carl Hanser Verlag, München

Downloaded on 10.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110353/html?srsltid=AfmBOorHJjxVOV2yI_fEzemf9tqviO_VNF5qgMZ_Fpr-EUjBleRxMV33
Scroll to top button