Analysis of an Early Failed TP2 Inner Grooved Copper Tube from a Condenser
-
Q. Wang
, Z. Zhang , C. Fu , E. Yang , H. Su und J. Tian
Abstract
The failure analysis of a leaky inner grooved copper tube (IGCT) was carried out in this paper by means of macroscopic observation, inclusion analysis and fatigue test. Results indicated that the defects introduced in the ball spinning process should be responsible for the leakage. Fatigue test results revealed that the defect in the tube wall was big enough to cause the leakage. Although many micro-scale cracks were observed on the outer surface, these micro-scale cracks are small folding defects in essence. In addition, the chemical composition of the tube material was qualified. Finally, the root cause of the leakage is that the defect in the IGCT material led to the crack initiation and propagation in the tube expansion process. It is suggested that the formation of the defects should be avoided in the production.
Kurzfassung
Die Schadensanalyse eines innen gerippten Kupferrohrs (Inner Grooved Copper Tube, IGCT) in diesem Beitrag erfolgte mittels makroskopischer Beobachtung, Einschlussanalyse und Ermüdungstest. Die Ergebnisse zeigten, dass während des Spinnverfahrens aufgetretene Defekte für die Leckage verantwortlich sind. Den Ergebnissen des Ermüdungstests zufolge war der Defekt in der Rohrwand groß genug, um die Leckage zu verursachen. Es wurden jedoch viele Mikrorisse auf der äußeren Oberfläche gefunden. Bei diesen Mikrorissen handelt es sich im Wesentlichen um kleine Faltungsfehler. Außerdem wurde die chemische Zusammensetzung des Rohrmaterials qualifiziert. Zuletzt lag die Ursache der Leckage darin, dass der Defekt im Material des IGCT während des Rohrerweiterungsverfahrens zur Entstehung und Ausbreitung von Rissen führte. Die Entstehung dieser Defekte sollte bei der Produktion vermieden werden.
References / Literatur
[1] Ye, H.; Long, L.S.; Zhang, H.T.; Zou, R.Q.: Appl. Energy113 (2014), 18–26. /10.1016/j.apenergy.2013.08.067Suche in Google Scholar
[2] Bilen, K.; Cetin, M.; Gul, H.; Balta, T.: Appl. Therm. Eng.29 (2009), 53–61. /10.1016/j.applthermaleng.2008.04.008Suche in Google Scholar
[3] Aroonrat, K.; Jumpholkul, C.; Leelaprachakul, R.; Dalkilic, A.S.; Mahian, O.; Wongwises, S.: Int. Commun. Heat Mass42 (2013), 62–68. /10.1016/j.icheatmasstransfer.2012.12.001Suche in Google Scholar
[4] Li, Y.; Xiao, H.; Lian, B.; Tang, Y.; Zeng, Z.X.: Trans. Nonferrous Met. Soc. China18 (2008), 29–33.10.1016/S1003-6326(08)60209-5Suche in Google Scholar
[5] Peterson, G.P.; Ma, H.B.: ASME J. Heat Transfer118 (1996), 31–39.10.1115/1.2824063Suche in Google Scholar
[6] Wang, J.Y.: Appl. Energy86 (2009), 30–37. /10.1016/j.apenergy.2009.04.026Suche in Google Scholar
[7] Lu, L.S.; Tang, Y.; Yuan, D.; Deng, D.X.: J. Mater. Process. Technol.211 (2011), 69–77. /10.1016/j.jmatprotec.2011.05.007Suche in Google Scholar
[8] Lu, L.S.; Tang, Y.; Fang, W.Q.; Cheng, J.: Trans. Nonferrous Met. Soc. China23 (2013), 77–84.10.1016/S1003-6326(13)62473-5Suche in Google Scholar
[9] Tian, R.Z.; Wang, Z.T.: 2002. 729–877.Suche in Google Scholar
[10] Zhang, G.L.; Zhang, S.H.; Li, B.; Zhang, H.Q.: J. Mater. Process. Technol.184 (2007), 393–400. /10.1016/j.jmatprotec.2006.12.016Suche in Google Scholar
[11] Sang, X.Q.; Liu, S.; Wang, S.P.: Nonferr. Met. Process.32 (2003), 37–40.Suche in Google Scholar
[12] Zhang, Z.D.; Zhao, Z.D.; Wang, J.A.; Shao, M.Z.: Forging Stamp. Technol.62 (2005), 39–40.Suche in Google Scholar
[13] Tang, Y.; Lu, L.S.; Yuan, D.; Wang, Q.H.; Zha, X.L.: J. Mater. Process. Technol.209 (2009), 33–40.Suche in Google Scholar
[14] TangD.; PengY.H.; LiD.Y.: J. Mater. Process. Technol.209 (2009), 68–74.Suche in Google Scholar
[15] Almeida, B.P.P.; Alves, M.L.; Rosa, P.A.R.; Brito, A.G.; MartinsP.A.F.: Int. J. Mach. Tool Manu.46 (2003), 43–52.Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Round Robin Test on “Microscopic Images of Cast Iron Samples” in the DGM Working Group “Quantitative Structural Analysis” of the Expert Committee Materialography
- Why We Need All Dimensions to Solve Both Very Old and Very New Questions in Materials at the Micro-, Nano- and Atomic Scales
- Analysis of an Early Failed TP2 Inner Grooved Copper Tube from a Condenser
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Round Robin Test on “Microscopic Images of Cast Iron Samples” in the DGM Working Group “Quantitative Structural Analysis” of the Expert Committee Materialography
- Why We Need All Dimensions to Solve Both Very Old and Very New Questions in Materials at the Micro-, Nano- and Atomic Scales
- Analysis of an Early Failed TP2 Inner Grooved Copper Tube from a Condenser
- Meeting Diary/Veranstaltungskalender
- Meeting Diary