3D-Characterization of AlCu5Mg0.3Mn0.3 and AlCu7Mn0.4 Alloys
-
R. Fernández Gutiérrez
Abstract
The three dimensional microstructural evolution of cast B206 (AlCu5Mg0.3Mn0.3) and AlCu7 (AlCu7Mn0.4) alloys is studied as a function of solution treatment time by synchrotron tomography. Both alloys are formed by an α-Al matrix, Al2Cu and Al7Cu2(FeMn). 3D microstructural parameters of the aluminides such as volume fraction and interconnectivity are presented for the alloys in as-cast condition and after 4 h, 8 h and 16 h of solution treatment at 530 °C. Morphological evolution is obtained from the mean and Gauss curvature distribution. Finally, target metallography is combined with energy dispersive x-ray analysis to identify the phases remaining after 16 h of solution treatment.
Kurzfassung
In Abhängigkeit von der Dauer des Lösungsglühens wird die dreidimensionale Mikrostrukturentwicklung von B206- (AlCu5Mg0,3Mn0,3) und AlCu7-Gusslegierungen (AlCu7Mn0,4) mittels Synchrotron-Tomographie untersucht. Beide Legierungen setzen sich aus einer α-Al-Matrix, Al2Cu und Al7Cu2(FeMn) zusammen. Mikrostrukturelle 3D-Parameter der Aluminide, beispielsweise der Volumenanteil und die Interkonnektivität, werden für die Legierungen im Gusszustand und nach 4, 8 bzw. 16 h Lösungsglühen bei 530 °C aufgezeigt. Die morphologische Entwicklung geht aus der Verteilung der mittleren und der gaußschen Krümmung hervor. Schließlich werden metallographische Zielpräparation und energiedispersive Röntgenanalyse miteinander kombiniert, um die Phasen zu identifizieren, die nach 16 h Lösungsglühen zurückbleiben.
References / Literatur
[1] G.K.Sigworth, Recent developments in the high strength aluminum-copper alloy A206, American Foundry Society Transactions, 1–14, 2003Search in Google Scholar
[2] M.A.Talamantes-Silva, A.Rodríguez, J.Talamantes-Silva, S.Valtierra, R.Colás, Effect of solidification Rate and Heat Treting on the Microstructure and Tensile Behavior of an Aluminum-Copper Alloy, Metallurgical and Materials Transactions B, Vol 39B, 911–91910.1007/s11663-008-9204-0Search in Google Scholar
[3] M.A.Talamantes, A.Rodríguez, J.Talamantes-Silva, S.Valtierra, R.Colás, Characterization of an Al-Cu cast alloy, Materials Characterization, Vol 59, 1434–1439, 2008. DOI: 10.1016/j.matchar.2008.01.005Search in Google Scholar
[4] L.Bäckerud, G.Chai, J.Tamminen, Solidification characteristics of aluminum alloys, American Foundry Society, Skanaluminium, Vol. 2, Stockholm, Sweden, 1990.Search in Google Scholar
[5] V.S.Zolotorevsky, N.A.Belov, M.V.Glazoff, Casting aluminum alloys, Elsevier, Moscow/Pittsburgh, 2007.10.1016/B978-008045370-5.50007-9Search in Google Scholar
[6] Z.Asghar, G.Requena, H.P.Degischer, P.Cloetens, Three-dimensional study of Ni aluminides in an AlSi12 alloy by means of light optical and synchrotron microtomography, Acta Materialia, vol 57 (14), 4125–4132, 2009. DOI: 10.1016/j.actamat.2009.05.010Search in Google Scholar
[7] Z.Asghar, G.Requena, E.Boller, 3D Interpenetrating Hybrid Network of rigid phases in an AlSi10Cu5NiFe Piston Alloy, Praktische Metallographie/Practical Metallography, Vol 47 (9), 471–486, 2010.10.3139/147.110092Search in Google Scholar
[8] European synchrotron radiation facility <http://esrf.fr>Search in Google Scholar
[9] J.Schindelin, I.Arganda-Carreras, E.Frise, V.Kaynig, M.Longair, T.Pietzsch, S.Preibisch, C.Rueden, S.Saalfeld, B.Schmid, J.Y.Tinevez, D.J.White, V.Hartenstein, K.Eliceiri, P.Tomancak, A.Cardonaet, Fiji: an open source platform for biological-image analysis, Nature Methods, Vol 9 (7), 676–682, 2012. DOI: 10.1038/nmeth.2019Search in Google Scholar PubMed PubMed Central
[10] Avizo Fire <http://www.vsg3d.com/node/25>Search in Google Scholar
[11] D.Tolnai, P.Townsend, G.Requena, L.Salvo, J.Lendvai, H.P.Degischer, In situ synchrotron tomographic investigation of the solidification of an AlMg4.7Si8 alloy, Acta Materialia, Vol 60, 2568–2577, 2012. DOI: 10.1016/j.actamat.2012.01.024Search in Google Scholar PubMed PubMed Central
[12] L.F.Mondolfo, Al alloys: structures and properties, Butterworth, London/Boston, 197610.1016/B978-0-408-70932-3.50009-7Search in Google Scholar
[13] K.Liu, X.Cao, X.G.Chen, Solidification of iron-rich intermetallic phases in Al-4.5Cu-0.3Fe cast alloy, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol 42, 2004–2016, 2011 DOI: 10.1007/s11661-010-0578-7Search in Google Scholar
[14] F.K.H.Quek, R.W.I.Yarger, C.Kirbas, Surface parameterization in volumetric images for feature classification. IEEE International Symposium of Bio-Informatics and Bio-Engineering, 297–303, 2000Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Durability of Multiple-Anticorrosive Bolts in a Corrosive Environment
- 3D-Characterization of AlCu5Mg0.3Mn0.3 and AlCu7Mn0.4 Alloys
- Intergranular Corrosion in Retaining Rings Made of X39CrMo17-1 and X39Cr13
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Articles in the same Issue
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Durability of Multiple-Anticorrosive Bolts in a Corrosive Environment
- 3D-Characterization of AlCu5Mg0.3Mn0.3 and AlCu7Mn0.4 Alloys
- Intergranular Corrosion in Retaining Rings Made of X39CrMo17-1 and X39Cr13
- Meeting Diary/Veranstaltungskalender
- Meeting Diary