Home Technology Examination of the Mg-Zn Phase Formation in Hot-Dip Galvanized Steel Sheet
Article
Licensed
Unlicensed Requires Authentication

Examination of the Mg-Zn Phase Formation in Hot-Dip Galvanized Steel Sheet

  • O. Zywitzki , Th. Modes , B. Scheffel and Ch. Metzner
Published/Copyright: May 23, 2013
Become an author with De Gruyter Brill

Abstract

Zinc-magnesium layers have been produced by a combination of conventional hot-dip galvanizing and PVD magnesium coating. A subsequent short heat treatment causes the diffusion of magnesium into the zinc layer. The influence of the maximum temperature of the heat treatment on the diffusion of magnesium and on the type and distribution of the formed intermetallic Mg-Zn phases has been examined in detail in a temperature range from 300 to 400°C by means of X-ray phase analyses and metallographic cross sections. With increasing temperature a sequential intermetallic Mg-Zn phase formation has been detected. At 300°C, an initial magnesium rich, intermetallic MgZn2 surface layer is formed, which, at higher temperatures from 335 to 379°C, is progressively transformed into a zinc rich Mg2Zn11 layer by interdiffusion. In this context, the nucleation of the Mg2Zn11 phase takes place on the interface between the MgZn2 and the Zn phase. Above the peritectic temperature of 381°C, the microstructure is composed of a zinc matrix in which precipitated MgZn2 is dispersed.

Kurzfassung

Die Herstellung von Zink-Magnesium-Schichten erfolgte durch die Kombination von konventionellem Feuerverzinken mit einer PVD-Magnesium-Beschichtung. Durch eine anschließende, kurze Wärmebehandlungsprozedur diffundiert das Magnesium in die Zinkschicht. Der Einfluss der maximalen Temperatur der Wärmebehandlung auf die Diffusion des Magnesiums und auf die Art und Verteilung der gebildeten intermetallischen Mg-Zn-Phasen wurde im Bereich von 300 bis 400°C durch röntgenographische Phasenanalysen und metallographische Querschnitte detailliert untersucht. Mit zunehmender Temperatur wurde ein sequentieller Prozess der intermetallischen Mg-Zn-Phasenbildung nachgewiesen. Bei 300°C bildet sich zuerst eine magnesiumreiche, intermetallische MgZn2-Deckschicht, welche bei höheren Temperaturen von 335 bis 379°C durch Interdiffusion zunehmend in eine zinkreichere Schicht aus Mg2Zn11 umwandelt. Die Keimbildung der Mg2Zn11-Phase erfolgt dabei an der Grenzfläche zwischen MgZn2- und Zn-Phase. Oberhalb der peritektischen Temperatur von 381°C besteht das Gefüge aus einer Zinkmatrix in der MgZn2 dispers ausgeschieden vorliegt.


Translation: E. Engert

Olaf Zywitzki studied Material Science and received his doctorate from TU Bergakademie Freiberg. He works in Fraunhofer Institute Electron Beam and Plasma Technology and is head of the department Material Characterization. His research activities focus on thin film solar cells, optical layers, hard coatings and corrosion protection layers.

Thomas Modes studied Physical Engineering at West Saxon University of Applied Sciences of Zwickau. He works as research associate for Fraunhofer Institute for Electron Beam and Plasma Technology FEP in the area of thin film characterization. In 2006 he received his doctorate from TU Bergakademie Freiberg.


References / Literatur

[1] Kawafuku, J.; Katoh, J.; Toyama, M.; Ikeda, K.; Nishimoto, H.; Satoh, H.: Proc. 5th Automotive Corr. & Prevention Conference, Michigan, Philadelphia, USA, Society of Automotive Engineers, 1991, 4350Search in Google Scholar

[2] Vlot, M.; Bleeker, R.; Maalman, T.; van Perlstein, E.: Proc. of the Galvanized Steel Sheet Forum, ILZRO and IZA, Düsseldorf, Germany, 2006, 1324Search in Google Scholar

[3] Tsujimura, T.; KomatsuA.; Andoh, A.: Proc. Galvatech, Brussels, Belgium, Stahl Eisen, 2001, 145152Search in Google Scholar

[4] Schuhmacher, B.; Schwerdt, C.; Seyfert, U.; Zimmer, O.: Surf. Coat. Technol.163–164 (2003), 70370910.1016/S0257-8972(02)00660-6Search in Google Scholar

[5] Hosking, N. C.; Ström, M. A.; Shipway, P. H.; Rudd, C. D.: Corros. Sci.49 (2007), 3669-369510.1016/j.corsci.2007.03.032Search in Google Scholar

[6] Koll, T.; Ullrich, K.; Faderl, J.; Hagler, J.; Schuhmacher, B.; Spalek, A.: Proc. Galvatech, Chicago, Illinois, USA, 2004, 803812Search in Google Scholar

[7] Hagler, J.; Angeli, G.; Ebner, D.; Luckeneder, G.; Fleischhanderl, M.; Schatzl, M.: Proc. of Eurosteel, Graz, Austria, 2008, 12511256Search in Google Scholar

[8] Morishita, M.; Koyama, K.; Mori, Y.: Mater. Trans.38 (1997), 719-72310.2320/matertrans1989.38.719Search in Google Scholar

[9] Schuerz, S.; Fleischanderl, M.; Luckeneder, G. H.; Preis, K.; Haunschmied, T.; Mori, G.; Kneissl, A. C.: Corros. Sci.51 (2009), 2355-236310.1016/j.corsci.2009.06.019Search in Google Scholar

[10] Prosek, T.; Nazarov, A.; Bexell, U.; Thierry, D.; Serak, J.: Corros. Sci.50 (2008), 2216-223110.1016/j.corsci.2008.06.008Search in Google Scholar

[11] Morimoto, Y.; Honda, K.; Nishimura, K.; Tanaka, S.; Takahashi, A.; Shindo, H.; Kurosaki, M.: Nippon Steel Technical Report No. 87 (2003), 24-26Search in Google Scholar

[12] Scheffel, B.; Ehlers, K. D.; Schuhmacher, B.; Floßdorf, F.-J.; Hagler, J.; Metzner, C.; Steffen, R.; Steinbeck, G.: Steel Research73 (2002), 114-12210.1002/srin.200200182Search in Google Scholar

[13] Marder, A. R.: Progress in Materials Science45 (2000), 191-27110.1016/S0079-6425(98)00006-1Search in Google Scholar

[14] Okamoto, H.: J. Phase Equilib.15 (1994), 129-13010.1007/BF02667700Search in Google Scholar

[15] Clark, J. B.; Zabdyr, L.; Moser, Z.: Phase Diagrams of Binary Magnesium Alloys, ASM international Metals Park, Ohio, 1998, 353364Search in Google Scholar

[16] De Bruycker, E.; Zermout, Z.; De Cooman, B. C.: Materials Science Forum539–543 (2007), 1276128110.4028/www.scientific.net/MSF.539-543.1276Search in Google Scholar

Received: 2011-2-11
Accepted: 2011-6-29
Published Online: 2013-05-23
Published in Print: 2012-04-01

© 2012, Carl Hanser Verlag, München

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110143/html
Scroll to top button