Home Technology Microstructural Features of AZ31 Deformed at High Temperatures
Article
Licensed
Unlicensed Requires Authentication

Microstructural Features of AZ31 Deformed at High Temperatures

Dedicated to Professor H. P. Degischer on the occasion of his 65th birthday
  • C. Poletti , F. Warchomicka , R. Okruch and H. Knoblich
Published/Copyright: May 5, 2013
Become an author with De Gruyter Brill

Abstract

An as-cast AZ31 magnesium alloy was investigated using light microscopy (LOM) and electron backscatter diffraction (EBSD) methods to quantify and describe the deformation mechanisms activated at high temperatures. Compression tests were carried out by means of a Gleeble®1500 device in the range of 320–500°C and 0.03–10 s-1 of strain rate. Deformed samples were simulated by finite elements method to correlate the microstructure with the local deformation parameters. EBSD measurements were used to distinguish and quantify the new recrystallized grains and to characterize the misorientation distribution. These results helped to determine the grain size distribution with the temperature and the strain rate by LOM pictures. Dynamic recrystallization is denoted by necklace microstructure, and twinning promotes the recrystallization nucleation. At high temperature and slow strain rate recovery takes place followed by continuous dynamic recrystallization.

Kurzfassung

Eine AZ31-Magnesiumlegierung im Gusszustand wurde mittels Lichtmikroskopie (LIMI) und Elektronenrückstreubeugung (EBSD) untersucht, um die bei hohen Temperaturen ausgelösten Verformungsmechanismen quantitativ zu bestimmen und zu beschreiben. Mit einer Gleeble®1500-Apparatur wurden Druckversuche im Temperaturbereich von 320–500°C und bei einer Verformungsgeschwindigkeit von 0,03-10 s-1 durchgeführt. Verformte Proben wurden anhand der Methode der finiten Elemente simuliert, um eine Korrelation der Mikrostruktur mit den lokalen Verformungsparametern zu ermöglichen. Es wurden EBSD-Messungen eingesetzt, um die neuen rekristallisierten Körner zu differenzieren und zu quantifizieren und die Misorientierungsverteilung zu beschreiben. Die Ergebnisse dienten der Bestimmung der Korngrößenverteilung bei einer bestimmten Temperatur und Verformungsgeschwindigkeit anhand von Aufnahmen der lichtoptischen Mikroskopie. Die Dynamische Rekristallisation ist durch eine kettenartige Mikrostruktur gekennzeichnet, und Zwillingsbildung fördert die Rekristallisation mit Keimbildung. Bei hohen Temperaturen und geringer Verformungsgeschwindigkeit findet eine Erholung mit nachfolgender kontinuierlicher dynamischer Rekristallisation statt.


Corresponding author. Tel: 0043-1-58801-30818, Fax: 0043-1-58801-30899, Email address:

Roman Okruch Roman Okruch was born 1986 in Krenglbach (Austria). He studies Mechanical Engineering and Management at the Vienna University of Technology. In the course of his bachelor thesis, he worked at the Institute of Materials Science and Technology. He is currently studying at the Stockholm Royal Institute of Technology.

Cecilia Poletti Cecilia Poletti was born in 1976 in Argentina. In 2001 she received her degree in chemical engineering at the National University of Comahue in Argentina. She finished her doctorate studies in Materials Science in 2005 at the University of Technology of Vienna, where she is working since then as university assistant.


References/Literatur

[1] Totten, G. E.;XieL.: Mechanical engineering, 1963. Funatani, Kiyoshi. Ed:G.E.Totten,L.Xie,K.Funatani. Marcel Dekker, Inc.Search in Google Scholar

[2] Avedesuab, M. M.;BakerH.: ASM Specialty Handbook. Magnesium and Magnesium alloys. (1999)Search in Google Scholar

[3] Spigarelli, S.;El Mehtedi, M.;Cabibbo, M.;Evangelista, E.;Kaneko, J.;Jäger, A.;Gartnerova, V.: Mater. Sci. Eng.A462 (2007) 19720110.1016/j.msea.2006.03.155Search in Google Scholar

[4] Barnett, M. R.;Beer, A. G.;Atwell, D.;Oudin, A.: Scr. Mater.51 (2004) 1924.10.1016/j.scriptamat.2004.03.023Search in Google Scholar

[5] Devlin, J. F.: J. Phys. F: Metal Phys., Vol 4. (1974). 1865188210.1088/0305-4608/4/11/011Search in Google Scholar

[6] Xu, S. W.;Kamado, S.;Matsumoto, N.;Honma, T.;Kojima, Y.: Mat. Sci. Eng.A527 (2009) 526010.1016/j.msea.2009.08.062Search in Google Scholar

[7] Myshlyaev, M. M.;McQueen, H. J.;Mwembela, A.;Konopleva, E.: Mat. Sci. Eng.A337 (2002) 12113310.1016/S0921-5093(02)00007-2Search in Google Scholar

[8] Al-Samman, T;Gottstein, G.: Mater. Sci. Eng.A490 (2008) 41142010.1016/j.msea.2008.02.004Search in Google Scholar

[9] Bieler, T. R.;Semiatin, S. L.: International Journal of Plasticity18 (2002), 11651189.10.1016/S0749-6419(01)00057-2Search in Google Scholar

[10] Poletti, C.;Dieringa, H.;Warchomicka, F.: Mater. Sci. Eng.A516, 1–2 (2009), 13814710.1016/j.msea.2009.03.007Search in Google Scholar

[11] Keshavarz, Z.;Barnett, M. R.: Scr. Mater.55 (2006) 91591810.1016/j.scriptamat.2006.07.036Search in Google Scholar

[12] Peng, W. P.;Li, P. J.;Zeng, P.;Lei, L. P.: Mat. Sci. Eng. A494, Iss 1–2 (2008). 17317810.1016/j.msea.2008.04.029Search in Google Scholar

[13] Sato, T;Kral, M. V.: Metall. Mater. Trans.A39 (2008), 688694.10.1007/s11661-007-9360-xSearch in Google Scholar

Received: 2009-12-21
Accepted: 2010-2-25
Published Online: 2013-05-05
Published in Print: 2010-09-01

© 2010, Carl Hanser Verlag, München

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110083/html
Scroll to top button