Surface Properties of MoN Coated Engine Piston Rings
-
Hanbey Hazar
Abstract
This paper presents an experimental investigation of surface behaviours of compression ring coated with molybdenum nitride (MoN) of a diesel engine. In the experiments carried out, the ring surface of a four stroke diesel engine was coated with MoN — a ceramic material with a thickness of 2.0 ± 0.3 μm — using the arc PVD method. Initially, the test engine MoN coated ring was tested for a while with a load of ½. Then, the same engine without a MoN coating was tested under the same conditions. Analyses of microhardness and SEM were carried out in order to examine surface characteristics of ring. The results show less deformation and fewer scratches due to wear on the MoN coated ring as compared to the uncoated one. We conclude that coating the ring surface of internal combustion engines with MoN contributes to longer life for the ring, and thus the engine, by decreasing the mechanical wear caused by friction.
Kurzfassung
In dieser Arbeit wird eine experimentelle Untersuchung des Oberflächenverhaltens von mit Molybdännitrid (MoN) beschichteten Verdichtungsringen für einen Dieselmotor vorgestellt. Bei den vorgenommenen Experimenten wurde die Ringoberfläche eines Viertakt-Dieselmotors unter Anwendung des PVD-Lichtbogenverfahrens mit MoN überzogen, einem keramischen Material mit einer Dicke von 2,0 ± 0,3 μm. Zu Anfang wurde der mit MoN beschichtete Ring des Testmotors eine Zeitlang unter halber Belastung geprüft. Dann wurde der gleiche Motor ohne eine Beschichtung aus MoN unter den gleichen Bedingungen geprüft. Zur Untersuchung der Oberflächeneigenschaften des Rings wurden Mikrohärte- und REM-Analysen ausgeführt. Die Ergebnisse zeigen eine geringere Verformung und weniger Kratzer, die auf Verschleiß an dem mit MoN beschichteten Ring zurückzuführen sind, im Vergleich zu dem unbeschichteten. Wir schlussfolgern daraus, dass durch das Beschichten der Ringoberfläche von Verbrennungskraftmaschinen mit MoN zu einer längeren Nutzungsdauer des Rings beiträgt, indem der durch Reibung verursachte mechanische Verschleiß verringert wird.
References/Literatur
[1] Pawlus, P: Wear.209 (1997), 69–83.10.1016/S0043-1648(97)00007-0Search in Google Scholar
[2] Priest, M.;Taylor, C. M.: Wear.241 (2000), 193–203.10.1016/S0043-1648(00)00375-6Search in Google Scholar
[3] Tung, S.C.;Huang, Y.: Tribology Transactions. 47 (2004), 17–22.10.1080/05698190490279074Search in Google Scholar
[4] Hazar, H.: PhD thesis. Fırat University. (2004).Search in Google Scholar
[5] Merlo, A. M.: Surface and Coatings Technology.174–175 (2003), 21–26.10.1016/S0257-8972(03)00371-2Search in Google Scholar
[6] Sarioglu, C.;Demirler, U.;Kazmanlı, M.K.;Urgen, M.: Surface and Coatings Technology. 190 (2005), 238–243.10.1016/j.surfcoat.2004.08.184Search in Google Scholar
[7] Kazmanlı, M.K.;Urgen, M.;Cakir, A. F.: Surface and Coatings Technology. 167 (2003), 77–82.10.1016/S0257-8972(02)00866-6Search in Google Scholar
[8] Truhan, J. J.;Qu, J.;Blau, P. J.: Tribology. 38 (2005), 211–218.10.1016/j.triboint.2004.08.003Search in Google Scholar
[9] Rastegar, F.;Craft, A.: Surface and Coatings Technology. 61 (1993), 36–42.10.1016/0257-8972(93)90199-XSearch in Google Scholar
[10] Fiedrich, C.;Berg, G.;Broszeit, E.;Rick, F;Holland, J.: Surface and Coatings Technology. 97 (1997), 661–668.10.1016/S0257-8972(97)00335-6Search in Google Scholar
[11] Juanshang, J.;Barbezat, G.: Surface and Coatings Technology. 52 (1992), 169–178.10.1016/0257-8972(92)90043-ASearch in Google Scholar
[12] Kvernes, I.;Fortum, P.: Thin Solid Film. 5 (1978), 259–269.10.1016/0040-6090(78)90045-7Search in Google Scholar
[13] Godfrey, D.: Materials and design. 4 (1983), 759–765.10.1016/0261-3069(83)90199-1Search in Google Scholar
[14] Gadow, R.;Scherer, R.: Surface and Coatings Technology. 151 (2002), 471–477.10.1016/S0257-8972(01)01636-XSearch in Google Scholar
[15] Urgen, M.;Eryılmaz, O.L.;Cakır, A.F.;Kayalı, E.S.;Nilufer, B.;Isık, Y.: Surface and Coatings Technology. 94–95 (1997), 501–506.10.1016/S0257-8972(97)00432-5Search in Google Scholar
[16] Solak, N.;Üstel, F.;Ürgen, M.;Aydın, S.;Çakır, A.F.: Surface and Coatings Technology. 174–175 (2003), 713–719.10.1016/S0257-8972(03)00702-3Search in Google Scholar
[17] Bozyazı, E.E.: Master thesis, Istanbul Technical University. (2002).Search in Google Scholar
[18] Andersson, P.;Tamminen, J,Sandström, C.E.: VTT Research Notes. 2178 (2002), 1–105.Search in Google Scholar
[19] Johansson, S.;Nilsson, P. H.;Ohlsson, R.;Anderberg, C.;RosenB. G.: Tribology. 41 (2008),854–859.10.1016/j.triboint.2008.02.012Search in Google Scholar
[20] Barbezat, G.: Surface and Coatings Technology. 200 (2005), 1990–1993.10.1016/j.surfcoat.2005.08.017Search in Google Scholar
[21] Öner, C.;Hazar, H.;Nursoy, M.: Materials & Design. 30 (2009), 914–920.10.1016/j.matdes.2008.05.018Search in Google Scholar
[22] Srivastava, D. K.;Agarwal, A. K.;Kumar, J.: Materials & Design. 28 (2007), 1632–1640.10.1016/j.matdes.2006.01.034Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Inhalt / Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Henry Clifton Sorby — ein Privatgelehrter begründete vor rund 145 Jahren die Metallographie
- SEM-EDS Micro-Analytical Data from Enamel Samples of Cellini's Salt Cellar “Saliera”
- Surface Properties of MoN Coated Engine Piston Rings
Articles in the same Issue
- Contents/Inhalt
- Inhalt / Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Henry Clifton Sorby — ein Privatgelehrter begründete vor rund 145 Jahren die Metallographie
- SEM-EDS Micro-Analytical Data from Enamel Samples of Cellini's Salt Cellar “Saliera”
- Surface Properties of MoN Coated Engine Piston Rings