Startseite Oxide-Scale and α-Casing Characterization in Ti6Al4V Alloy Oxidised in Oxygen Gas
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oxide-Scale and α-Casing Characterization in Ti6Al4V Alloy Oxidised in Oxygen Gas

  • M. N. Mungole , M. Surender und S. Bhargava
Veröffentlicht/Copyright: 2. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Characterization of oxide scale and α-casing in Ti6Al4V titanium alloy oxidized at 1050, 1150, 1250 and 1340 K for 2, 4, 6, 8 and 12 h in a dynamic oxygen gas atmosphere has been analyzed. The oxide scale exhibited a spalling tendency. Its thickness systematically increased with the temperature and the duration of the oxidation. At a later stage the scale exhibited a catastrophic growth due to the increased porosity. The oxygen stabilized α-phase and its volume fraction as well as its hardness decreased with the distance in the metal matrix (α-casing). Estimated oxygen diffusion coefficients based on the hardness profiles across α-casing were 7.0 × 10−14, 8.5 × 10−14, and 1.2 × 10−13, 1.8 × 10−13 m2/s at 1050, 1150, 1250, and 1340 K, respectively. Similarly, the overall activation energy for diffusion of oxygen in the alloy was 105 kJ mol−1. EDS analysis across α-casing in the internal oxidation zone revealed sharp concentration wells for Ti and Al. Titanium concentration decreased and that of aluminum increased in these wells.

Kurzfassung

Analysiert wurde die Eigenschaft der Oxid-Oberflächenschicht und der α—Umhüllung einer in einer dynamischen Sauerstoffgasatmosphäre bei 1050, 1150, 1250 und 1340 K bei 2, 4, 6, 8 und 12 Stunden Prozesszeit oxidierten Ti6Al4V-Legierung. Die Oxid-Oberflächenschicht zeigte eine Tendenz zum Abplatzen. Ihre Dicke nahm systematisch mit der Temperatur und der Oxidationsdauer zu. In einem späteren Stadium zeigte die Oxid-Oberflächenschicht ein katastrophales Wachstum aufgrund erhöhter Porosität. Die durch Sauerstoff stabilisierte α—Phase und deren Volumenanteil wie auch ihre Härte verringerten sich mit der Entfernung in der Metallmatrix (α-Umhüllung). Die basierend auf den Härteprofilen abgeschätzten Sauerstoffdiffusionskoeffizienten betrugen 7.0 × 10−14, 8.5 × 10−14 und 1.2 × 10−13, 1.8 × 10−13 m2/s bei 1050, 1150, 1250 bzw. 1340 K. Ähnlich dazu betrug die gesamte Aktivierungsenergie für die Sauerstoffdiffusion in der Legierung 105 kJ mol−1. Die EDS-Analyse über die α—Umhüllung in der inneren Oxidationszone ergab scharfe Konzentrationsinseln für Ti und Al. Die Titankonzentration nahm ab und die Aluminiumkonzentration in diesen Inseln nahm zu.


E-Mail:

Übersetzung: G. Poech


Literatur/References

[1] Martin, P.L.; Mendiratta, M.; Lipsitt, H.A.: Creep deformation of TiAl and TiAl + W alloy, Metal. Trans.14A (1983), 2170.10.1007/BF02662384Suche in Google Scholar

[2] Shida, Y.; Anada, H.: Oxidation behavior of binary Ti-Al alloys in high temperature air environment, Materials Transaction, TIM,34 (1993), 23624210.2320/matertrans1989.34.236Suche in Google Scholar

[3] Frangini, S, Mignone, A; De Riccardis, F.: Various aspects of the air oxidation behavior of a Ti6Al4V alloy at temperatures in the range 600–7000 CJ. Mater. Scien., 20, (1994), 71472010.1007/BF00445984Suche in Google Scholar

[4] Smith, W.F.: Structure and Properties of Engineering Alloys, McGraw-Hill Int.N.Y., 1993.Suche in Google Scholar

[5] Du, H.L.; Dutta, P.K.; Lewis, D.B.; Burnell-Gray, J.S.: Air oxidation behavior of Ti6Al4V alloy between 650 and 8500C, Corrosion Science: 36, (1994) 4, 631642.Suche in Google Scholar

[6] Mungole, M.N.; Singh, N.; Mathur, G.N.: Oxidation behavior of Ti6Al4V titanium alloy in oxygen. J. Mater. Sci. Tech, 18 (2002), 11111410.1179/026708301125000302Suche in Google Scholar

[7] Kofstad, P.: High Temperature Corrosion, Elsevier, Amserdam, 1988, pp 295.Suche in Google Scholar

[8] Becker, S.; Rahmel, A.; Schorr, M.; Schutze, M.: Mechanism of isothermal oxidation of the intermetallic TiAl and TiAl alloy, Oxid. Metals.38 (1992) 5/6, 425464.Suche in Google Scholar

[9] Shewman,P.G.; Diffusion in Solids, TMS, Warrendale, Pennsylvania, 1989, pp. 189.Suche in Google Scholar

[10] Liu, Z.; Welch, G.: Literature survey on diffusivities of oxygen, aluminum and Vanadium in alpha titanium, beta titanium and rutile, Metallurgical Transactions A, 19A (1988) 4, 11211125.10.1007/BF02628396Suche in Google Scholar

[11] Strafford, K.N.; Towell, J.M.: The interaction of titanium and titanium alloy with nitrogen at elevated temperatures. The kinetics and mechanism of titanium-nitrogen reaction, Oxid. Metals,10 (1976) 1, 4167.Suche in Google Scholar

[12] Roy, T.K.; Balasubramanium, R.; Ghosh, A.: Determination of oxygen and nitrogen diffusivities in titanium aluminide by subscale micro-hardness profile, Script Materialia,34 (1996) 9, 14251439.Suche in Google Scholar

[13] Wiedemann, K.E.,; Shankaran, S.N.; Clark, R.K.; Wallace, T.A.: Oxidation of high temperature intermetallics, eds. T.Grobstein and J.Doychak, TMS, Warrendale, 1988, pp. 195206.Suche in Google Scholar

[14] Fontana, M.G.; Greene, N.D.: Corrosion Engineering, McGRAW-HILL, Tokyo, 1978, pp. 361.Suche in Google Scholar

Received: 2005-5-4
Accepted: 2005-8-19
Published Online: 2013-05-02
Published in Print: 2006-11-01

© 2006, Carl Hanser Verlag, München

Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/147.100319/pdf
Button zum nach oben scrollen