The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
-
Hedayat Mohammad Soltani
, Mohsen Asadi Asadabad und Malek Naderi
Abstract
It was shown that new high-manganese austenitic steels can be used as an alternative to conventional Ni–Cr austenitic steels especially in vacuum vessels. In this study, a nickel-free austenitic steel with chemical composition of 24 wt.% Mn, 10 wt.% Cr, 0.13 wt.% C and trace elements of Si, Ti, V, W, and Al was hot-rolled at 950 and 1100 °C to different strains. Microscopic observations, X-ray diffraction, tensile, impact and microhardness tests were performed to characterize the microstructural aspects and mechanical properties. A small amount of chromium carbide was found on the grain boundaries of this fully austenitic steel. The results showed that the microstructure and mechanical properties of hot rolled manganese austenitic steel are affected by the dynamic recrystallization and twinning phenomena. Also, by changing the grain morphology from equiaxed to elongated, strength and hardness increased, and the impact toughness and ductility were reduced.
References
[1] D.S.Bae, S.P.Lee, Y.R.Cho, H.Takahashi: J. Trans. Nonferrous Met. Soc. China.21 (2011) 58. 10.1016/S1003-6326(11)61061-3Suche in Google Scholar
[2] D.S.Bae, S.H.Nahm, H.M.Lee, H.Kinoshita, T.Shibayama, H.Takahashi: J. Nucl Mater.329–333 (2004) 1038. 10.1016/j.jnucmat.2004.04.131Suche in Google Scholar
[3] S.Saito, K.Fukaya, S.Ishiyama, M.Eto, I.Sato, M.Kusuhashi, T.Hatakeyama, H.Takahashi, M.Kikuchi: J Nucl Mater.283–287 (2000) 593. 10.1016/S0022-3115(00)00088-XSuche in Google Scholar
[4] D.S.Bae, S.P.Lee, J.K.Lee, U.B.Baek, S.H.Nahm, H.Takahashi: J. Fusion Eng Des.87 (2012) 1025. 10.1016/j.fusengdes.2012.02.077Suche in Google Scholar
[5] S.R.Chen, H.A.Davies, W.M.Rainforth: J. Acta Mater.47 (18) (1999) 4555. 10.1016/S1359-6454(99)00334-1Suche in Google Scholar
[6] S.Yan, X.Liu, W.J.Liu, H.Lan, H.Wu: J. MSEA.640 (2015) 137. 10.1016/j.msea.2015.05.058Suche in Google Scholar
[7] N.Igata, T.Fujiga, H.Yumoto: J. Nucl Mater.179–181 (1991) 656. 10.1016/0022-3115(91)90174-6Suche in Google Scholar
[8] V.Coen, H.Kolbe, L.Orecchia, M. DellaRossa: J. FUSION ENG DES.14 (1991) 309. 10.1016/0920-3796(91)90014-HSuche in Google Scholar
[9] G.L.Edgemon, P.F.Tortoreili, G.E.C.Bell: J. Nucl Mater.191–194 (1992) 997. 10.1016/0022-3115(92)90624-TSuche in Google Scholar
[10] M.Onozuka, T.Saida, S.Hirai, M.Kusuhashi, I.Sato, T.Hatakeyama: J. Nucl Mater.255 (1998) 128. 10.1016/S0022-3115(98)00031-2Suche in Google Scholar
[11] M.Fodefiki, H.Ledbetter: J. Magn. Magn. Mater.110 (1992) 185. 10.1016/0304-8853(92)90031-ISuche in Google Scholar
[12] P.Sahu, S.K.Shee, A.S.Hamada, L.Rovatti, T.Sahu, B.Mahato, S. GhoshChowdhury, D.A.Porter, L.P.Karjalainen: J. Acta Mater.60 (2012) 6907. 10.1016/j.actamat.2012.07.055Suche in Google Scholar
[13] G.E.Totten, Steel Heat Treatment Handbook, Metallurgy and technologies, Second edition, CRC PRESS (2006). 10.1201/9781482293029Suche in Google Scholar
[14] R.L.Klueh, P.J.Maziasz, and E.H.Lee: J. MSEA.102 (1988) 115. 10.1016/0025-5416(88)90539-3Suche in Google Scholar
[15] S.Lee, C.Y.Lee, Y.K.Lee: J. Alloys Compd.628 (2015) 46. 10.1016/j.jallcom.2014.12.134Suche in Google Scholar
[16] H.Idrissi, L.Ryelandt, M.Veron, D.Schryvers, P.J.Jacques: J. Scr. Mater.60 (2009) 941. 10.1016/j.scriptamat.2009.01.040Suche in Google Scholar
[17] Y.-K.Lee, S.-J.Lee, J.Han: J. Mater. Sci. Technol.32 (2016) 1. 10.1080/02670836.2015.1114252Suche in Google Scholar
[18] A.S.Hamada, L.P.Karjalainen, R.D.K.Misra, J.Talonen: J. MSEA.559 (2013) 336. 10.1016/j.msea.2012.08.108Suche in Google Scholar
[19] S.-J.Lee, H.Fujii, K.Ushioda: J. Alloys Compd.749 (2018) 776. 10.1016/j.jallcom.2018.03.296Suche in Google Scholar
[20] S.Allain, J.-P.Chateau, O.Bouaziz, S.Migot, N.Guelton: J. MSEA.387–389 (2004) 158. 10.1016/j.msea.2004.01.059Suche in Google Scholar
[21] Y.S.Zhang, X.Lu, X.Tian, Z.Qin: J. MSEA.334 (2002) 19. 10.1016/S0921-5093(01)01781-6Suche in Google Scholar
[22] A.F.Padilha, P.R.Rios: J. ISIJ Int.42 (2002) 325. 10.2355/isijinternational.42.325Suche in Google Scholar
[23] H.J.Goldschmidt, Interstitial alloys, Butterworth & Co. (Publishers) Ltd. (1967). 10.1007/978-1-4899-5880-8Suche in Google Scholar
[24] D.A.Porter, K.E.Easterling, M.Sherif, Phase Transformations in Metals and Alloys, Third Edition, CRC Press (2009). 10.1201/9781439883570Suche in Google Scholar
[25] S.Buytoz: J. Mater. Lett.60 (2006) 605. 10.1016/j.matlet.2005.09.046Suche in Google Scholar
[26] E.Karantzalis, A.Lekatou, H.Mavros: Int J. Cast Metal Res.22 (2009) 448. 10.1179/174313309X436637Suche in Google Scholar
[27] Y.Li, Y.Gao, B.Xiao, T.Min, Y.Yang, S.Ma, D.Yi: J. Alloys Compd.509 (2011) 5242. 10.1016/j.jallcom.2011.02.009Suche in Google Scholar
[28] H.O.Pierson, Handbook of refractory carbides and nitrides, Properties, Characteristics, Processing and Applications, Noyes Publications (1996). 10.1016/B978-081551392-6.50001-5Suche in Google Scholar
[29] K.Wieczerzak, P.Bala, R.Dziurka, T.Tokarski, G.Cios, T.Koziel, L.Gondek: J. Alloys Compd.698 (2017) 673. 10.1016/j.jallcom.2016.12.252Suche in Google Scholar
[30] F.J.Humphreys, M.Hatherly, Recrystallization and related annealing phenomena, Second edition, Elsevier (2004). DOI:doi.org/10.1016/B978-0-08-044164-1.X5000-2. 10.1016/B978-008044164-1/50005-0Suche in Google Scholar
[31] H.J.McQueen, S.Yue, N.D.Ryan, E.Fry: J Mater Process Technol.53 (1995) 293. 10.1016/0924-0136(95)01987-PSuche in Google Scholar
[32] E.I.Poliak, J.J.Jonas: J. ISIJ.43 (2003) 684. 10.2355/isijinternational.43.684Suche in Google Scholar
[33] X.He, Z.Yu, X.Lai: Comput. Mater. Sci.44 (2008) 760. 10.1016/j.commatsci.2008.05.021Suche in Google Scholar
[34] H.K.D.H.Bhadeshia: J MATER SCI TECHNOL.26 (2010) 379. 10.1179/026708310X12635619988302Suche in Google Scholar
[35] D.Sui, H.Zhang, H.Zhu, Z.Zhu, Z.Cui: J. Iron Steel Res Int.24 (2017) 529. 10.1016/S1006-706X(17)30080-8Suche in Google Scholar
[36] P.Hahner: J. Acta Mater.44 (1996) 2345. 10.1016/1359-6454(95)00364-9Suche in Google Scholar
[37] G.Laplanche, A.Kostka, O.M.Horst, G.Eggeler, E.P.George: J. ACTA MATER.118 (2016) 152. 10.1016/j.actamat.2016.07.038Suche in Google Scholar
[38] R.Mohammadzadeh, M.Mohammadzadeh: J. MSEA.747 (2019) 265. 10.1016/j.msea.2018.11.085Suche in Google Scholar
[39] A.Irastorza-Landa, N.Grilli1, H.V.Swygenhoven: J. Model. Simul. Mater. Sci. Eng.25 (2017) 055010. 10.1088/1361-651X/aa6e24Suche in Google Scholar
[40] U.Messerschmidt, Dislocation Dynamics During Plastic Deformation, Springer Series in Materials Science, Springer-Verlag Berlin Heidelberg (2010). 10.1007/978-3-642-03177-9Suche in Google Scholar
[41] M.A.Meyers, K.K.Chawla, Mechanical Behavior of Materials, Cambridge university press, (2009). 10.1017/CBO9780511810947Suche in Google Scholar
[42] A.Ma, F.Roters: J. ACTA MATER.52 (2004) 3603. 10.1016/j.actamat.2004.04.012Suche in Google Scholar
[43] A.Ma, F.Roters, D.Raabe: J. Acta Mater.54 (2006) 2169. 10.1016/j.actamat.2006.01.005Suche in Google Scholar
[44] G.Z.Voyiadjis, F.H.Abed: J. Arch. Mech.57 (2005) 299.Suche in Google Scholar
[45] Y.S.Chen, W.Choi, S.Papanikolaou, J.P.Sethna: J. Phys Rev Lett.105 (2010) 105501. PMid:20867529; 10.1103/PhysRevLett.105.105501Suche in Google Scholar
[46] S.Sandfeld, M.Zaiser: J. Model. Simul. Mater. Sci. Eng.23 (2015) 065005. 10.1088/0965-0393/23/6/065005Suche in Google Scholar
[47] G.Dhanaraj, K.Byrappa, V.Prasad, M.Dudley, Handbook of Crystal Growth, Springer-Verlag Berlin Heidelberg (2010). 10.1007/978-3-540-74761-1Suche in Google Scholar
[48] A.Luft: J. PHYS STATUS SOLIDI B.49 (1970) 429. 10.1002/pssb.19700420143Suche in Google Scholar
[49] N.Igata, T.Fujiga, H.Yumoto: J. Nucl Mater.179–181 (1991) 656. 10.1016/0022-3115(91)90174-6Suche in Google Scholar
[50] B.Hwang, S.-J.Kim: J. MSEA.531 (2012) 182. 10.1016/j.msea.2011.10.047Suche in Google Scholar
[51] W.M.Dawson, F.R.Sale: J. Metall. Mater. Trans.8 (1977) 15. 10.1007/BF02677258Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News
Artikel in diesem Heft
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News