Effect of laser power on roughness and porosity in laser powder bed fusion of stainless steel 316L alloys measured by X-ray tomography
-
Jean-Baptiste Forien
Abstract
The quality of metal objects fabricated via laser powder bed fusion are highly affected by process parameters, and their influence on final products is yet to be fully explored. In this work, pyrometry signals of the melt pool were collected from a set of stainless-steel samples during manufacturing and the effect of laser power on porosity and roughness of final printed parts was analyzed. Results show that the melt pool pyrometry signal of contours increases with higher laser power, whereas it is lower and decreases for the infilled part. Post-built X-ray computed tomography imaging reveals that porosity decreases while sample roughness increases upon increasing laser power. The decrease in porosity with increasing laser power is attributed to the larger size of the contour welds that were printed first, leading to an increase in dimension of the final products.
References
[1] J.A. Koepf , M.R.Gotterbarm, M.Markl, C.Körner: Acta Mater.152 (2018) 119–126. 10.1016/j.actamat.2018.04.030Search in Google Scholar
[2] Y.P. Yang , M.Jamshidinia, P.Boulware, S.M.Kelly: Comput. Mech.61 (2018) 599–615. 10.1007/s00466-017-1528-7Search in Google Scholar
[3] S.H. Huang , P.Liu, A.Mokasdar, L.Hou: Int. J. Adv. Manuf. Technol.67 (2013) 1191–1203. 10.1007/s00170-012-4558-5Search in Google Scholar
[4] L.E. Murr , S.M.Gaytan, D.A.Ramirez, E.Martinez, J.Hernandez, K.N.Amato, P.W.Shindo, F.R.Medina, R.B.Wicker: J. Mater. Sci. Technol.28 (2012) 1–14. 10.1016/S1005-0302(12)60016-4Search in Google Scholar
[5] B. Zhang , Y.Li, Q.Bai: Chin. J. Mech. Eng. (2017) 1–13. 10.1007/s10033-017-0121-5Search in Google Scholar
[6] N.T. Aboulkhair , N.M.Everitt, I.Ashcroft, C.Tuck: Addit. Manuf.1–4 (2014) 77–86. 10.1016/j.addma.2014.08.001Search in Google Scholar
[7] M. Grasso , B.M.Colosimo: Meas. Sci. Technol.28 (2017) 044005. 10.1088/1361-6501/aa5c4fSearch in Google Scholar
[8] R. Cunningham , S.P.Narra, C.Montgomery, J.Beuth, A.D.Rollett: JOM.69 (2017) 479–484. 10.1007/s11837-016-2234-1Search in Google Scholar
[9] S. Tammas-Williams , H.Zhao, F.Léonard, F.Derguti, I.Todd, P.B.Prangnell: Mater. Charact.102 (2015) 47–61. 10.1016/j.matchar.2015.02.008Search in Google Scholar
[10] X. Zhou , D.Wang, X.Liu, D.Zhang, S.Qu, J.Ma, G.London, Z.Shen, W.Liu: Acta Mater.98 (2015) 1–16. 10.1016/j.actamat.2015.07.014Search in Google Scholar
[11] S. Ly , A.M.Rubenchik, S.A.Khairallah, G.Guss, M.J.Matthews: Sci. Rep.7 (2017) 4085. 28642468 10.1038/s41598-017-04237-zSearch in Google Scholar PubMed PubMed Central
[12] M. Simonelli , C.Tuck, N.T.Aboulkhair, I.Maskery, I.Ashcroft, R.D.Wildman, R.Hague: Metall. Mater. Trans. A46 (2015) 3842–3851. 10.1007/s11661-015-2882-8Search in Google Scholar
[13] A.M. Mancisidor , F.Garciandia, M.S.Sebastian, P.Álvarez, J.Díaz, I.Unanue: Phys. Procedia.83 (2016) 864–873. 10.1016/j.phpro.2016.08.090Search in Google Scholar
[14] N.P. Calta , J.Wang, A.M.Kiss, A.A.Martin, P.J.Depond, G.M.Guss, V.Thampy, A.Y.Fong, J.N.Weker, K.H.Stone, C.J.Tassone, M.J.Kramer, M.F.Toney, A. VanBuuren, M.J.Matthews: Rev. Sci. Instrum.89 (2018) 055101. 29864819 10.1063/1.5017236Search in Google Scholar PubMed
[15] C.L.A. Leung , S.Marussi, R.C.Atwood, M.Towrie, P.J.Withers, P.D.Lee: Nat. Commun.9 (2018) 1355. 29636443 10.1038/s41467-018-03734-7Search in Google Scholar PubMed PubMed Central
[16] C.L.A. Leung , S.Marussi, M.Towrie, J.del Val Garcia, R.C.Atwood, A.J.Bodey, J.R.Jones, P.J.Withers, P.D.Lee: Addit. Manuf.24 (2018) 647–657. 10.1016/j.addma.2018.08.025Search in Google Scholar
[17] M. Iebba , A.Astarita, D.Mistretta, I.Colonna, M.Liberini, F.Scherillo, C.Pirozzi, R.Borrelli, S.Franchitti, A.Squillace: J. Mater. Eng. Perform.26 (2017) 4138–4147. 10.1007/s11665-017-2796-2Search in Google Scholar
[18] G. Ziółkowski , E.Chlebus, P.Szymczyk, J.Kurzac: Arch. Civ. Mech. Eng.14 (2014) 608–614. 10.1016/j.acme.2014.02.003Search in Google Scholar
[19] A. du Plessis , S.G.le Roux, G.Booysen, J.Els: 3D Print. Addit. Manuf.3 (2016) 48–55. 10.1089/3dp.2015.0034Search in Google Scholar
[20] G. Kasperovich , J.Haubrich, J.Gussone, G.Requena: Mater. Des.105 (2016) 160–170. 10.1016/j.matdes.2016.05.070Search in Google Scholar
[21] F. Imani , M.Montazeri, H.Yang, A.Gaikwad, P.Rao, E.Reutzel: Proc. ASME 2018 13th Int. Manuf. Sci. Eng. Conf., ASME, College Station, TX (2018).Search in Google Scholar
[22] F. Leonard , S.Tammas-Williams, I.Todd: Proc. 6th Conf. Ind. Comput. Tomogr., Wels, Austria (2016).Search in Google Scholar
[23] K. Heim , F.Bernier, R.Pelletier, L.-P.Lefebvre: Case Stud. Nondestruct. Test. Eval.6, Part A (2016) 45–52. 10.1016/j.csndt.2016.09.002Search in Google Scholar
[24] T.B. Kim , S.Yue, Z.Zhang, E.Jones, J.R.Jones, P.D.Lee: J. Mater. Process. Technol.214 (2014) 2706–2715. 10.1016/j.jmatprotec.2014.05.006Search in Google Scholar
[25] J.C. Fox , F.H.Kim, Z.C.Reese, C.Evans: Proc. Euspen/ASPE Conf. Dimens. Accuracy Surf. Finish Addit. Manuf., Leuven, Be (2017).Search in Google Scholar
[26] G. Kerckhofs , G.Pyka, M.Moesen, S.V.Bael, J.Schrooten, M.Wevers: Adv. Eng. Mater.15 (2013) 153–158. 10.1002/adem.201200156Search in Google Scholar
[27] H.D. Carlton , A.Haboub, G.F.Gallegos, D.Y.Parkinson, A.A.MacDowell: Mater. Sci. Eng. A651 (2016) 406–414. 10.1016/j.msea.2015.10.073Search in Google Scholar
[28] Z.Y. Chua , I.H.Ahn, S.K.Moon: Int. J. Precis. Eng. Manuf.-Green Technol.4 (2017) 235–245. 10.1007/s40684-017-0029-7Search in Google Scholar
[29] M. Ignatiev , I.Smurov, G.Flamant: Meas. Sci. Technol.5 (1994) 563. 10.1088/0957–0233/5/5/016Search in Google Scholar
[30] F. Bayle , M.Doubenskaia: Proc Fundam. Laser Assist. Micro- Nanotechnologies, 2008: pp. 698505–698505-8. 10.1117/12.786940Search in Google Scholar
[31] M. Pavlov , M.Doubenskaia, I.Smurov: Phys. Procedia.5 (2010) 523–531. 10.1016/j.phpro.2010.08.080Search in Google Scholar
[32] M. Doubenskaia , M.Pavlov, Y.Chivel: Key Eng. Mater.431 (2010) 458–461. 10.4028/www.scientific.net/KEM.437.458Search in Google Scholar
[33] A. Lehti , L.Taimisto, H.Piili, O.Nyrhilä, A.Salminen: ICALEO (2011).Search in Google Scholar
[34] Y. Chivel , I.Smurov: Phys. Procedia.5 (2010) 515–521. 10.1016/j.phpro.2010.08.079Search in Google Scholar
[35] P.J. Depond , G.Guss, S.Ly, N.P.Calta, D.Deane, S.Khairallah, M.J.Matthews: Mater. Des.154 (2018) 347–359. 10.1016/j.matdes.2018.05.050Search in Google Scholar
[36] B. Yuan , G.M.Guss, A.C.Wilson, S.P.Hau-Riege, P.J.DePond, S.McMains, M.J.Matthews, B.Giera: Adv. Mater. Technol.3 (2018) 1800136. 10.1002/admt.201800136Search in Google Scholar
[37] M. Doubenskaia , P.Bertrand, I.Smurov: Surf. Coat. Technol.201 (2006) 1955–1961. 10.1016/j.surfcoat.2006.04.060Search in Google Scholar
[38] J. Schindelin , I.Arganda-Carreras, E.Frise, V.Kaynig, M.Longair, T.Pietzsch, S.Preibisch, C.Rueden, S.Saalfeld, B.Schmid, J.-Y.Tinevez, D.J.White, V.Hartenstein, K.Eliceiri, P.Tomancak, A.Cardona: Nat. Methods.9 (2012) 676–682. 22743772 10.1038/nmeth.2019Search in Google Scholar PubMed PubMed Central
[39] M. Doube , M.M.Kłosowski, I.Arganda-Carreras, F.P.Cordelières, R.P.Dougherty, J.S.Jackson, B.Schmid, J.R.Hutchinson, S.J.Shefelbine: Bone.47 (2010) 1076–1079. 20817052 10.1016/j.bone.2010.08.023Search in Google Scholar PubMed PubMed Central
[40] D. Legland , I.Arganda-Carreras, P.Andrey: Bioinformatics.32 (2016) 3532–3534. 10.1093/bioinformatics/btw413Search in Google Scholar PubMed
[41] I. Smurov : Laser-Assist. Microtechnology 2000, International Society for Optics and Photonics (2001).Search in Google Scholar
[42] I. Yadroitsev , P.Krakhmalev, I.Yadroitsava: J. Alloys Compd.583 (2014) 404–409. 10.1016/j.jallcom.2013.08.183Search in Google Scholar
[43] T. Craeghs , F.Bechmann, S.Berumen, J.-P.Kruth: Phys. Procedia.5 (2010) 505–514. 10.1016/j.phpro.2010.08.078Search in Google Scholar
[44] P. Norman , H.Engström, A.F.H.Kaplan: J. Phys. Appl. Phys.41 (2008) 195502. 10.1088/0022-3727/41/19/195502Search in Google Scholar
[45] T. Craeghs , S.Clijsters, E.Yasa, F.Bechmann, S.Berumen, J.-P.Kruth: Opt. Lasers Eng.49 (2011) 1440–1446. 10.1016/j.optlaseng.2011.06.016Search in Google Scholar
[46] H. Ali , H.Ghadbeigi, K.Mumtaz: Mater. Sci. Eng. A712 (2018) 175–187. 10.1016/j.msea.2017.11.103Search in Google Scholar
[47] L. Parry , I.A.Ashcroft, R.D.Wildman: Addit. Manuf.12 (2016) 1–15. 10.1016/j.addma.2016.05.014Search in Google Scholar
[48] J. Robinson , I.Ashton, P.Fox, E.Jones, C.Sutcliffe: Addit. Manuf.23 (2018) 13–24. 10.1016/j.addma.2018.07.001Search in Google Scholar
[49] S. Ghouse , S.Babu, R.J.Van Arkel, K.Nai, P.A.Hooper, J.R.T.Jeffers: Mater. Des.131 (2017) 498–508. 10.1016/j.matdes.2017.06.041Search in Google Scholar
[50] P. Wang , W.J.Sin, M.L.S.Nai, J.Wei: Mater. Basel Switz.10 (2017). 10.3390/ma10101121Search in Google Scholar PubMed PubMed Central
© 2020, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Tomography and radiography using hard X-rays and neutrons: shedding light on materials properties and engineering devices
- Original Contributions
- In-situ synchrotron investigation of the phases- and their morphology-development in Mg–Nd–Zn alloys
- Observation of side arm splitting studied by high resolution X-ray radiography
- Re-solidification dynamics and microstructural analysis of laser welded aluminium
- Determination of damage mechanisms and damage evolution in fiber metal laminates containing friction stir welded thin foils
- Characterization of aluminum alloy microstructures by means of synchrotron X-ray micro-tomography – a simple toolchain for extracting quantitative 3D morphological features
- Investigation of the 3D hydrogen distribution in zirconium alloys by means of neutron tomography
- Effect of laser power on roughness and porosity in laser powder bed fusion of stainless steel 316L alloys measured by X-ray tomography
- Microstructure of polymer-imprinted metal–organic frameworks determined by absorption edge tomography
- 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers
- Microstructure and texture contributing to damage resistance of the anosteocytic hinge-bone in the cleithrum of Esox lucius
- Time-resolved phase-contrast microtomographic imaging of two-phase solid–liquid flow through porous media
- People
- In Memoriam Prof. Dr. phil. Dr. techn. h. c. mult. Hellmut F. Fischmeister (1927–2019)
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Tomography and radiography using hard X-rays and neutrons: shedding light on materials properties and engineering devices
- Original Contributions
- In-situ synchrotron investigation of the phases- and their morphology-development in Mg–Nd–Zn alloys
- Observation of side arm splitting studied by high resolution X-ray radiography
- Re-solidification dynamics and microstructural analysis of laser welded aluminium
- Determination of damage mechanisms and damage evolution in fiber metal laminates containing friction stir welded thin foils
- Characterization of aluminum alloy microstructures by means of synchrotron X-ray micro-tomography – a simple toolchain for extracting quantitative 3D morphological features
- Investigation of the 3D hydrogen distribution in zirconium alloys by means of neutron tomography
- Effect of laser power on roughness and porosity in laser powder bed fusion of stainless steel 316L alloys measured by X-ray tomography
- Microstructure of polymer-imprinted metal–organic frameworks determined by absorption edge tomography
- 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers
- Microstructure and texture contributing to damage resistance of the anosteocytic hinge-bone in the cleithrum of Esox lucius
- Time-resolved phase-contrast microtomographic imaging of two-phase solid–liquid flow through porous media
- People
- In Memoriam Prof. Dr. phil. Dr. techn. h. c. mult. Hellmut F. Fischmeister (1927–2019)
- DGM News
- DGM News