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Nanoindentation analysis methods examined
with finite element simulations

Quantitative mechanical properties were obtained from
simulated nanoindentation load—depth curves using three
analysis methods. Unloading curve fits for stiffness, depth
and contact area gave reliable and relatively accurate values
of elastic modulus and hardness, though inaccuracies oc-
curred in some cases. Work of indentation analysis was ef-
fective for finding the ratio of hardness to reduced elastic
modulus, but a large discrepancy occurred in one case. Fit-
ting the loading curves with parabolas gave good fits to the
simulated curves. Accurate ratios of elastic modulus to
hardness were obtained for some of the loading fits, though
others were inaccurate. Each method has specific strengths
and weaknesses, but crucially, they all consider different
aspects of the load—depth data. This means the methods
are potentially complementary and a single, combined ana-
lysis may be possible and beneficial in obtaining accurate
values.
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1. Introduction

Analysis of load—depth curves to obtain accurate values of
mechanical properties is an essential feature of nanoindenta-
tion testing. The ability to quantify mechanical properties di-
rectly from the load—depth data alleviates the need to image
the final indentation impression, and hence, enables very
shallow indents to be performed and analyzed quickly and
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efficiently. Current methods of analyzing the curves are
based on theoretical, continuum models for elasticity and
yielding, combined with empirical fits to experimental data.
Three well-known methods of analysis are based on, respec-
tively, fits to the unloading curve, the loading curve and the
area under the curves (equivalent to the work of indentation).
While each of these methods has been developed over a
number of years with many research groups involved they
have largely become associated with specific researchers,
namely: Oliver and Pharr [1] for unloading curve analysis;
Hainsworth, Chandler and Page [2] for loading curve analy-
sis; Cheng and Cheng [3] for area under the curves analysis.

There is an abundance of published papers testifying to
the utility of the different methods for analyzing the curves
[4—13]. Each method has its own strengths, but they also
have weaknesses that are still being addressed [14—17].
Given their strengths and weaknesses it is best to view the
different analysis routines as complementary rather than
competing methods. The current study examined the pre-
dictive capability of these methods using finite element
modeling (FEM) to obtain ideal load—depth curves for a
range of materials with known elastic moduli and a variety
of yield behaviors. Specifically, elastic moduli ranging
from 70 GPa to 458 GPa and yield stresses that exhibit var-
ious forms of bi-linear and multi-linear isotropic hardening
were used. The load—depth curves were then analyzed using
the different methods. The results were compared to the
FEM input values for elastic modulus, the expected hard-
ness and the ratios of the two (i.e. either hardness to elastic
modulus or hardness to reduced elastic modulus).
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2. Analysis methods
2.1. Unloading curve analysis

A number of researchers have worked on methods for ana-
lyzing the unloading portion of a load—depth curve includ-
ing Loubet et al. [18, 19] and Doerner & Nix [20]. Their
work, along with that of earlier Russian researchers [21],
was developed into what has become the “standard meth-
od” of analysis for nanoindentation testing by Oliver &
Pharr [1]. It has subsequently been refined several times
by way of small modifications that increase its accuracy
[22]. The basis of the analysis is fitting the initial slope of
the unloading curve to obtain the contact stiffness () that
can be related to the reduced elastic modulus (E.) of the test
sample. The material’s hardness is determined in the con-
ventional manner from the peak load divided by the pro-
jected contact area (A,) of the indentation impression. This
area is obtained from the contact depth, which is also found
from fitting the unloading curve.

The basis of the unloading curve technique is in part de-
rived from earlier work done by Sneddon [23, 24], who
considered the analysis of the elastic contact between a ri-
gid, axisymmetric punch and an elastic half space. This re-
vealed the general relationship between load on the punch
and its depth of penetration. Applying this to the analysis
of the unloading curve, it has been found to fit an equation
of the form:

P = B(h— hs)" (1)

In the above equation, P represents the indenter force or
load, # is the depth of the indenter with A; being the final
(unloaded) depth of the indentation. The parameters m and
f are determined from a curve fitting process. This relation-
ship is essentially the same as that predicted by Sneddon
[23, 24] when considering purely elastic deformation with
the elastic depth being h—h;. This type of fit assumes that
in most cases the unloading curve can be treated as purely
elastic. A linear unloading curve, equivalent to m = 1, is ex-
pected when a flat punch is used on an elastic half-space.
This was the fit used by Loubet et al. [18, 19], and Doerner
& Nix [20] to analyze nanoindentation data. The analysis
of Oliver & Pharr [1] recognized that m is usually larger
than 1, and m = 1.5 (equivalent to a paraboloid punch) is a
better approximation than a flat punch.

The standard definition of contact stiffness, S, is the deri-
vative of the unloading curve. An established relationship be-
tween this stiffness and the material’s reduced elastic modu-
lus is known [25] and given by Eq. (2). In the unloading
analysis elastic modulus is found from the contact stiffness
for the initial part of the unloading curve by applying Eq. (2):

5= %Eﬁf 2)

where A, is the projected contact area, which is also used to
find hardness (H) from the peak load (P,,,,) using:
Pmax
Ac

H= (3)

The reduced elastic modulus, E,, is related to the indenter
tip and substrate elastic properties, where E,, v, E,, v, are
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the elastic modulus and Poisson’s ratio of the tip and sam-
ple, respectively, by:

1 (=) (1-2)
E E | B )

The elastic modulus, E;, and Poisson’s ratio, v, of a dia-
mond indenter tip are 1 141 GPa and 0.07, respectively.

The importance of fitting the unloading curve accurately
and determining the contact area, A, to obtain values for
E. and H is central to the analysis. To find the value of A,
a function relating it to the contact depth, %, is needed.
For a perfect Berkovich pyramidal indenter tip this would
be A =24.5 h2, but since making a perfect tip is impossi-
ble, an expanded equation is used:

7 .
Alhe) =24512+) G/ (5)
Jj=1

where C; are calibration constants of the specific indenter
tip being used. These values are obtained by performing na-
noindents to a range of depths on a test material with known
properties, usually fused silica. Finding the contact depth is
tricky, but using largely empirical fits, it has been found

that:
he = hy, — hy (6)

where &, is the maximum indenter depth at peak load and
hg is given by:

hy =¢ S (7)
The constant ¢ is taken to be 0.75 for a paraboloid contact,
but ranges between 0.72 (conic indenter) and 1 (flat-
punch).

The unloading analysis has been used with finite element
methods in the past to help determine the mechanical prop-
erties of materials (see for instance the work of Knapp et al.
[26]. FEM of indents has also been an essential part of re-
fining the unloading curve analysis. Several significant de-
velopments [22] have been made to the standard analysis
routines that address issues typically due to errors in the cal-
culated contact depth or contact area of the indentations
[27-30]. FEM methods have been instrumental in under-
standing and overcoming many of these limitations of the
unloading curve analysis [14, 27, 29-32]. However, the ba-
sic approach of (1) fitting to the unloading curve, (2) find-
ing the contact stiffness, (3) finding the contact area, and
then (4) calculating mechanical properties from these has
remained essentially the same.

2.2. Loading curve analysis

Hainsworth et al. [2, 33] took a fundamentally different ap-
proach to analyze nanoindentation data based on fitting the
loading curve rather than the unloading curve. They studied
a variety of materials and found that during loading, the
load is proportional to the square of the indentation depth,
so that:

P = Ky (8)
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where K, is a proportionality term that depends on the ma-
terial’s properties. From basic considerations of the elastic
and plastic properties of a material they developed the fol-
lowing expression for K, in terms of E and H:

K, _E<(p\/§+ "’\/E) N 9)

The two parameters @ and yw have values that must be opti-
mized for the specific indenter tip being used as all tips
have slightly different geometries. This is achieved with a
regression analysis of data from a number, n, of different
materials (labelled “i”) with known hardness, H;, and elas-
tic modulus, E;. The value of K; for each material is found
from fitting to the loading curves. To find the optimum val-
ues of @ and y, it is necessary to find the unconstrained
minimum of the expression shown below such that the
square of the errors are minimized. That is:

2
n E; H, K, -1/2
min o=+ —[} ) (10)
5 (o5 ey 8

Once @ and y are determined Egs. (8) and (9) can be used
to find the ratio of E to H, or if one of them is already
known then the other can be found.

2.3. Work of indentation analysis

A fundamentally different method of analysis considers
the work of indentation and has the advantage that it
avoids the need to fit either the loading or unloading
curves. Instead, the method looks at the area under the
load—depth curves which can be found directly from the
load—depth data. This method, as put forward by Cheng
& Cheng [3, 34], facilitates the quantification of a materi-
al’s mechanical properties by asserting that the area under
the loading curve equals the total sum of the elastic and
plastic work of indentation, while the area under the un-
loading curve is only the elastic work of indentation. The
difference between the areas under the curves is then the
irreversible (or plastic) work of indentation. The work ana-
lysis establishes an approximate relationship between the
ratio of hardness to reduced elastic modulus (H/E,) and

the ratio of irreversible work to total work. The relation-
ship has the form:

H W,
—%H()(] - ) 11
E; Wiot (1)

where W, is the area under the unloading curve and W, is
the area under the loading curve. Combining this with an

Fixed boundary

Fixed boundary

Fixed boundary

Fixed boundary

Fig. 1. Finite element model mesh for indenter and substrate showing
smaller mesh size in the contact area.

Table 1. The input and expected values of mechanical properties for the finite element simulations of the different materials.

Model input & mechanical Nominal material type
property
Fused Aluminum Aluminum Iron ZnO Sapphire
Silica Alloy 8009
Elastic Modulus, E (GPa) 72 82.1 70 210 149 458
Poisson’s Ratio, v 0.18 0.31 0.3 0.3 0.2 0.2
Reduced Modulus, E, (GPa) 69.9 84.2 72.1 192.1 136.7 336.9
Yield Stress (GPa) 2.5 0.353 0.083 0.325 2.267 15.33
Tangent Modulus, E, (GPa) 17.38 - 1.032 5.8 - -
Hardness, H (GPa) 9.3 1.2 0.48 1.2 4.8 25
Maximum Indenter 2075 1750 2200 178 1870 1000
Displacement (nm)
Ratio of H/E 0.1292 0.0146 0.0069 0.0057 0.0322 0.0546
Ratio of H/E, 0.133 0.0143 0.0067 0.0062 0.0351 0.0742
Int. J. Mater. Res. (formerly Z. Metallkd.) 110 (2019) 2 93
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approach similar to the unloading curve analysis to find the
reduced elastic modulus enables the hardness to be found
from Egs. (2) and (11) without using Eq. (3).

Examining a number of different materials with known
properties and performing a least squares fit to the resulting
data it is possible to find the parameter I1,in Eq. (11). Once
I1, is known the method can be used to analyze load—depth
curves to quantify mechanical properties. This requires the
work of loading and unloading to be found from the differ-
ent parts of a load—depth curve by numerically integrating
to find the area under the curves. Eq. (11) is then used to re-
late these to the mechanical properties.

3. Finite element simulation and analysis procedure

The nanoindentation process was simulated using the axi-
symmetric features of the ANSYS™ finite element soft-
ware package. Realistic stress—strain curves were used to
capture the elastic and plastic behaviors of materials with a
range of different properties. The indenter tip was modeled
as a cone with the angle set equal to 70.3° to ensure the
cross-sectional area of the cone is equivalent to that of an
ideal Berkovich pyramid. The indentation depths and di-
mensions of the specimens modeled using FEM varied
from one material to another, but in many cases the materi-
als and the depths were chosen to replicate published results
[1, 28, 29, 31, 35]. A typical finite element mesh and the
boundary conditions applied are shown in Fig. 1. A very
fine mesh was deployed in the contact region to adequately
resolve the large stress and strain gradients that are present
during the nanoindentation procedure. This also allowed
accurate determination of the contact area directly from
the simulations. With reference to Fig. 1, it can be seen that
symmetry boundary conditions were imposed along the y-
axis (along the center of the conical indenter). Additionally,
the specimen was simply supported, and the indentation
was made via an imposed displacement at the upper surface
of the indenter. Friction between the indenter and the mate-
rial’s surface was assumed to be zero. Note that due to the
axisymmetric nature of the model the specific geometry of
the substrate was a flat-ended cylinder, while the indenter
was a conical-tipped cylinder. For all analyzes the speci-
men dimensions were chosen to be sufficiently large as to
approximate the behavior of a semi-infinite half-space. This
was ensured by increasing the specimen dimensions to the
point where the results became insensitive to size.

A wide range of mechanical properties (see Table 1) with
various nonlinear stress—strain curves were used to replicate
different materials during the FEM nanoindentation simula-
tions. Table 1 details the elastic modulus, Poisson’s ratio,
yield stress, and tangent modulus (where applicable) that
were used for a given simulation. Additionally, the table in-
cludes the maximum indentation depth used for each simu-
lation and the literature value of hardness for the material
being replicated [1, 28, 29, 31, 35]. To model the nonlinear
yield behavior either bilinear or multi-linear isotropic hard-
ening models were used to replicate the stress—strain curves
of the materials. Plots of these stress—strain curves are pre-
sented in Fig. 2.

ANSYS™ Parametric Design Language (APDL) files
were created to facilitate simulations and to improve data
extraction efficiencies. Finite element simulations produce
significant amounts of output so a level of automation is es-
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sential for data extraction and supplemental calculations.
The ANSYS™ output included information such as: (1) in-
denter forces, displacements, stresses, and strains; (2) spe-
cimen deformations, stresses, and strains. The specimen
stresses and strains consisted of both elastic and plastic
components. Thus, upon simulated retraction of the inden-
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Fig. 2. Yield stress versus strain models for the simulated materials. A
range of yield behaviors were modeled with different assumptions for
strain hardening.
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ter, residual stresses and strains were observed in the speci-
mens, along with permanent deformations due to plasticity.
Using the indenter forces and displacements provided by
the finite element simulations of each of the materials (giv-
en in Table 1) curves of load versus depth were created for
the loading and unloading segments of the nanoindentation
cycle.

The predicted loading and unloading curves were used as
the basis for comparing the three methods of analysis pre-
viously discussed. To implement the unloading curve ana-
lysis, the FEM load—depth data for the unloading curves
were fitted to Eq. (1) using MATLAB™. The mechanical
properties were then found using Egs. (2), (3), (4) and (5).
For the loading curve analysis the FEM load—depth data
for the loading curve was fitted to an equation of the form
Eq. (9) for each of the materials modeled. Subsequently,
the values of @ and y consistent with optimizing Eq. (10)
were found from the fits of the loading curve for all the ma-
terials. Lastly, for the work of indentation analysis the inte-
grated area under the loading and unloading curves were
used to find the total work and elastic work of indentation,
respectively, for each material. As with the other curve fit-
ting procedures, MATLAB™ was used and a curve fit to
Eq. (11) was performed to find the value of the parameter
I1, that relates hardness, elastic modulus, and work. The
value of II, was optimized across all the materials. Once
IT, was found the Cheng & Cheng [3] method was imple-
mented to find H/E, for each material from the loading and
unloading curves with the aid of Eq. (11).

4. Results and discussion

Numerous FEM simulations were needed to compare the
different analysis methods. As previously mentioned, sev-
eral different sets of material properties were considered
for this purpose and they were chosen to have similar prop-
erties to fused silica, aluminum alloy 8009, pure aluminum,
iron, ZnO, and sapphire.

Figure 3 shows contour plots generated by the finite ele-
ment software when simulating indentation for a soft,
ductile material which in this particular case is replicating
aluminum alloy 8009. These contour plots show many of
the key features seen for the other materials, though not all
of them are shown here for brevity. The vertical displace-
ment (y-component) of the material (replicating aluminum
alloy 8009) under peak loading is shown by Fig. 3a. This
plot shows the indenter at its maximum displacement of
1750 nm, though the maximum deformation of the speci-
men is 1732.9 nm. The variance between these two values
is due to the compliance of the simulated diamond indenter.
It should be noted that this variance is exacerbated when
simulating materials with elastic moduli approaching that
of diamond; in this study that is sapphire.

The surface deformation for the simulated aluminum al-
loy 8009 after the indenter has been removed is illustrated
in Fig. 3b. In this case the maximum residual displacement
h,, in the substrate is 1594 nm. For this material, and for
the other ductile materials simulated, pile-up is evident at
the edges of the indent. Figure 3c shows the residual stress
field in the y-direction, ay, that persists in the specimen after
the indenter’s removal.

Load—depth curves for all of the FEM simulations are
presented in Fig. 4a to f with the depth being the displace-
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Fig. 3. The results of the simulations for one material, aluminum alloy
8009. (a) Maximum vertical displacement of indenter into the material
showing the extent of the deformation; (b) Permanent vertical defor-
mation after the removal of the indenter with the indenter impression
in the surface and pile-up at the indent edge; (c) Residual stress, g, in
y-direction after unloading.
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ment of the indenter without correction for the indenter
compliance. The maximum specimen displacements (in-
cluding the correction for the indenter compliance) are also
shown in these figures. For several of the curves, each spe-
cimen material is relatively compliant compared to the dia-
mond indenter, hence the specimen and indenter curves es-
sentially overlap one another. For simulations replicating
pure aluminum (Fig. 4b) at the maximum applied indenter
displacement of 2200 nm, the maximum vertical displace-
ment of the specimen is 2 185.3 nm. An indenter force of
64 mN was required to produce this deformation. Note that
a permanent deformation of 2 107 nm remains for this par-

ticular simulation even after the indenter has been re-
tracted.

When the stiffness of a specimen approaches that of the
indenter, the compliance of the indenter leads to larger
variances between the applied indenter depth and the speci-
men’s maximum deformation. This effect is acutely apparent
in Fig. 4f where the simulation involves sapphire, which has
an elastic modulus approximately 40 % of the diamond in-
denter’s elastic modulus. During the FEM simulated nanoin-
dentation, an applied indenter depth of 500 nm produces a
maximum specimen deformation of only 437.9 nm due to
compression in the diamond indenter.
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Fig. 4. Load—depth curves obtained from finite element simulations showing both the indenter and substrate displacements for (a) 8009 aluminum,
(b) aluminum, (c) fused silica, (d) iron, (e) ZnO, and (f) sapphire. The materials with higher mechanical properties cause significant deformation of

the indenter and, hence, there is a difference between the indenter and substrate displacements.
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Fig. 5. Unloading curve fits for each of the simulated materials based
on Eq. (1). Note the origins of the curves are displaced to fit them all
on the same plot.

4.1. Unloading curve analysis

The standard unloading curve analysis based on Eq. (1) was
fitted to all of the FEM simulations, as illustrated in Fig. 5.
The figure shows that the fitting procedure generally
yielded good results, along with excellent fits in some
cases. With respect to the FEM results the exponent curve
fit parameter m in Eq. (1) spanned a relatively narrow band
from 1.2681 (aluminum alloy 8009) to 1.4869 (fused sili-
ca). The other fitting parameter, § in Eq. (1), is most easily
found in terms of its reciprocal 1/f which ranged from
0.0159 for fused silica to 0.205 for ZnO. Using these curve
fit parameters, the contact stiffness for each of the simulat-
ed nanoindentation experiments was obtained. In addition,
Egs. (5) and (6) were used, respectively, to calculate the
contact depth and the projected contact area corresponding
to the maximum indenter load. The hardness and elastic
modulus properties were evaluated using Eqgs. (2) and (3).
Importantly this method when compared to published and
expected values for the elastic modulus and hardness
yielded predictions that were sometimes very accurate and
generally good. Table 2 lists each of the simulated materials
along with the material property predictions obtained using
the standard (Oliver & Pharr [1]) method.

The accuracy of the elastic modulus and hardness ob-
tained by analyzing the FEM unloading curves was com-
pared to the input values. For elastic modulus, which was
expected to be closest to the input values, the errors ranged
from a low of less than 1.9 % to a high of about 26.5 % (this
was an outlier since the average error was only 11 %). The
hardness predictions were found to have a higher average
error of about 29 %, though there is a higher-level of uncer-
tainly in the published hardness data so these discrepancies
are somewhat expected. In Table 2, we see that the relative
errors in hardness range from a low of 0.7 % for ZnO to a
high of almost 105 % for iron. The hardness prediction for
iron appears to be an aberration when the average hardness
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error is taken into consideration. Overall, of the methods
of analysis considered the unloading curve method based
on the work of Oliver & Pharr [1, 22] produced the most
consistent match with the published and expected values
for elastic modulus and hardness.

4.2. Loading curve analysis

The loading curve analysis provides the ratio of hardness to
elastic modulus (H/E). The loading curve data generated by
the FEM simulations along with the parabolic curve fits
required for the analysis, are shown in Fig. 6. The figure
shows the excellent fit between the FEM load curves and
the parabolic functions indicating that the assumption of a
parabolic loading curve shape is valid. The parabolic curve
fit coefficient, K, in Eq. (8), for each of the FEM simula-
tions ranges from 13.26 for aluminum to 445.68 for sap-
phire in units of GPa. Using Eq. (10), it was determined that
the optimal values for the fitting parameters @ and y were,
respectively, 0.1970 and 0.7548. As depicted in Fig. 7, the
quality of the curve fit incorporating these optimal values
is good. The plot shows the values of K, obtained from
the individual load—depth curves versus those obtained
using the fitting parameters @ = 0.1970 and y = 0.7548.

Comparing the expected values of H/E to the values giv-
en by the loading analysis (see Table 2) it can be seen that
there is a very good match for some of the simulated materi-
als, notably sapphire and ZnO. The other data are not such a
good match with the worst being the value for iron which is
off by over 100%. Combining this method with the ap-
proach deployed in the unloading curve analysis of Oliver
& Pharr [1, 22] enables either elastic modulus or hardness
to be found using the loading fit. As would be expected this
gave good values of H and E for the simulated sapphire and
aluminum, and very poor values for iron. The other simulat-
ed materials were between these extremes.

4.3. Work of indentation analysis

Application of the area under the curves or work of indenta-
tion method produced results that were comparable in accu-
racy to those obtained when utilizing the unloading curve
method. The work of indentation analysis gives the ratio of
hardness to reduced elastic modulus (H/E,) using Eq. (11).
The fitting parameter I1, used in Eq. (11) was found from a
best fit to all the simulated materials. This gave a value of
I1, = 0.1413 as the best fit which is represented by the solid
line on the plot for all the materials given in Fig. 8. Using
Eq. (11) the material properties were calculated and these
are presented in Table 2 where they are compared to their re-
spective expected values. As seen in this table, the results
are generally good for H/E,, with the simulated sapphire,
aluminum and aluminum 8009 alloy all close to their ex-
pected values. Analysis of the simulated ZnO, fused silica
and iron curves showed the method was somewhat inaccu-
rate in terms of H/E,, with iron being the most inaccurate.

Combining the work of indentation analysis with the
equations used in the unloading analysis it was possible to
find either the elastic modulus or the hardness for each of
the simulated materials. This gave elastic modulus values
with errors that were comparable to (or even slightly better)
than those obtained from the unloading curve analysis on its
own.
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5. Conclusions

The standard unloading curve method [1, 22], the loading
curve method [2, 33] and the work of indentation [3, 34]
have been used to analyze loading and unloading curves
produced using FEM for materials with a wide range of
properties. Fits to the FEM load—depth curves for each of
the methods are very good indicating the basic assumptions
with regards to curve shape are valid for each of the meth-
ods. That is, Eq. (1) for the unloading analysis fits the un-
loading curve well, the parabolic loading curve implied by
Eq. (8) is an excellent fit to the FEM loading curves, and
the work of indentation analysis using Eq. (11) gives a close
fit to the observed areas under the load—depth curves.
Extracting the hardness, elastic modulus and their ratios
from the fits determines the overall accuracy of the meth-
ods. In this regard the maturity of the unloading curve ana-
lysis, which in various forms has been used for over
30 years, gives it an advantage with the properties having
values consistently close to those expected. This is also a

reflection of the general robustness of the method for ana-
lyzing data from a variety of materials. The unloading
curve analysis provides a direct way to find the values for
elastic modulus and hardness rather than a ratio of the two
as obtained with the other methods. Very good property
predictions are obtained from the work of indentation meth-
od for most of the materials modeled, though there were
large discrepancies in some cases. When comparing the
best results from the unloading curve analysis to the best
from a combination of the unloading analysis and work of
indentation it was found that the combination gave slightly
more accurate values. These two methods make similar as-
sumptions in the analysis and, hence, it is not surprising that
they are comparable in accuracy and can be combined to
give slightly better results.

Analysis of the loading curve fit was found to give the
least accurate values for the properties despite the fact that
the parabolic curve fits were remarkably good (see Fig. 6).
However, it should be noted that other researchers have
found good fits to the loading curve using functions that

Table 2. Comparison of the results for the unloading curve, loading curve and indentation work analysis. The values in parentheses are

the percentage difference compared to the expected values (Table 1).

Fused Aluminum Aluminum Iron ZnO Sapphire
Silica Alloy 8009
Unloading, 7.3 1.5 0.5 2.5 4.8 28
H (GPa) (-21.5%) (25.0%) 4.2 %) (108.3 %) (0.0%) (12.0%)
Unloading, 76.2 89.9 73.4 185.6 167.6 374.6
E. (GPa) (9.0%) (6.8%) (1.8%) (-3.4%) (22.6 %) (11.2%)
Unloading, 79 88.1 71.3 201.5 188.5 534.1
E (GPa) (9.7 %) (7.3 %) (1.9 %) (—4.0%) (26.5 %) (16.6 %)
Unloading, 0.0924 0.0170 0.0070 0.0124 0.0255 0.0524
HIE (-28.5%) (16.6 %) (1.6%) (118 %) (-20.9 %) (—4.0%)
Unloading, 0.0958 0.0167 0.0068 0.0135 0.0286 0.0747
HI/E, (-28.0%) (16.7 %) (1.5%) (117.7 %) (-18.4%) (0.7 %)
Loading, 7.3 1.5 0.5 2.5 4.8 28
(GPa) (-21.5%) (25.0%) (4.2%) (108.3 %) (0.0%) (12.0%)
Loading, 79.1 71 206.2 134.5 144.9 302.1
E. (GPa) (13.2%) (-=15.7 %) (186.0 %) (=30.0%) (6.0%) (-10.3 %)
Loading, 82.2 68.4 228.8 138.7 159.2 393.7
E (GPa) (14.2 %) (~=16.7 %) (226.9 %) (-34.0%) (6.8 %) (—=14.0 %)
Loading, 0.0888 0.0219 0.0022 0.0180 0.0302 0.0711
HI/E (-31.3%) (50.2 %) (-68.3 %) (216.2 %) (-6.36 %) (30.3 %)
Loading, 0.0923 0.0211 0.0024 0.0186 0.0331 0.0927
HI/E, (-30.6 %) (47.7 %) (-64.2 %) (199.8 %) (-5.62 %) (24.9 %)
Indent work, 6.3 1.5 0.5 2.3 4.6 28.6
H (GPa) (-32.3%) (25.0%) 4.2 %) (91.7 %) (4.2 %) (14.4 %)
Indent work, 76.2 89.9 73.4 185.6 167.6 374.6
E. (GPa) (9.0%) (6.8 %) (1.8 %) (-3.4%) (22.6 %) (11.2%)
Indent work, 73.8 81.2 66.8 168.9 160.9 359.6
E (GPa) 2.5%) (-1.1%) (4.6 %) (~19.6 %) (8%) (-21.5%)
Indent work, 0.0854 0.0185 0.0075 0.0136 0.0286 0.0795
H/E (-33.9 %) (26.5%) (8.5 %) (138.9 %) (-11.2%) (45.7 %)
Indent work, 0.0827 0.0167 0.0068 0.0124 0.0274 0.0763
HI/E, (=37.8%) (16.7 %) (1.5%) (99.9 %) (-21.8%) 2.9%)
98 Int. J. Mater. Res. (formerly Z. Metallkd.) 110 (2019) 2




D. D. Mahoney, A. B. Mann: Nanoindentation analysis methods examined with finite element simulations

Normalized

loading
curve fits

Force (mN)

A 4

Displacement (nm)

Fig. 6. Parabolic loading curve fits for each of the simulated materials
based on Eq. (8). Note the origins of the curves are displaced to fit them
all on the same plot.
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Fig. 7. Plot of the parabolic loading curve fitting value, K,, in Eq. (9).
The value of individual load—depth curves for each sample are the data
points. The line is the value expected using the best fit parameters
@ =0.1970 and y = 0.7548.

are not parabolic [13]. With the loading curve method, the
predicted values for the materials exhibiting significant
work-hardening, aluminum and iron, were very poor sug-
gesting that the assumption of a constant E/H ratio in
Eq. (9) is an issue. Given the quality of the curve fit, there
appears to be scope to develop this analysis further, in parti-
cular as a complementary method to the unloading curve
analysis.

A well-known issue with load—depth curve analysis is the
effect of pile-up or sink-in at the edge of the contact affect-
ing the contact geometry and, hence, contact area. This
change in contact geometry depends on several factors in-
cluding: the ratio of yield stress to elasticity for a material
(which is related to H/E); the extent of work hardening;
the presence of residual stresses at the surface. In general,
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Fig. 8. Ratio of hardness to reduced modulus as a function of the work
of indentation (ratio of unloading work to total work). The individual
points for each sample (data points) and the best fit for Eq. (11) are
shown.

compressive stress and low H/E favors pile-up, while ten-
sile stress and high H/E favors sink-in. These geometry
changes impact all of the analysis methods, but the unload-
ing curve analysis explicitly uses contact area to find E,
and H so it is very susceptible to errors in contact geometry.
The loading curve and work of indentation methods are bet-
ter in this regard as they do not use contact area to find the
ratios of H/E or H/E,. It is interesting to note that across all
of the analysis methods the least accurate values were ob-
tained for the simulated iron and aluminum. In both cases
the hardness relative to elastic modulus is very low, and
there is linear strain-hardening. For the unloading analysis,
pile-up gives significant contact area errors, while for the
other two methods the strain-hardening results in changes
in hardness with depth.

Fitting of the FEM load—depth curves shows that all of the
methods of analysis give significant discrepancies from the
expected values for some of the materials simulated, though
each method also gives very good results for some of the
simulated curves. Going forward, it is likely that the best re-
sults for analyzing real curves may come from unifying the
different methods into a single methodology. This is likely
to require refinements of the loading curve analysis to ensure
compatibility with the other methods. A single, integrated
analysis methodology could offer a way to overcome the spe-
cific weaknesses of the individual analysis routines.

This material is based in part upon work supported by the National
Science Foundation under Grant No. 1006723.
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