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Fracture properties of materials are strongly influenced by
initial microstructure/texture, loading conditions, environ-
ment, notch geometry and phase transformations. The notch
geometry effect on fracture properties of materials is very
sensitive to the geometry of structure, scale effects and
loading mode. A critical literature review is performed to
understand several consensuses about the complexity of
notch geometry in the deformation and fracture responses
of materials. It is still not clear in these circumstances
which variable is the most important to determine the me-
chanical properties of materials. This article deals with the
quantitative methods for designing specimen geometry for
different applications. However, microstructure alone is
not a sufficient parameter for designing new alloys. In this
work, the effect of notch geometry and temperature on the
tensile properties of titanium alloys has been determined
through a Bayesian computational framework under an arti-
ficial intelligence paradigm. The dataset considered for
computation is essentially obtained from the elegant experi-
mental research of Jenkins and Willard. Their analysis was
performed on a physical basis and gives very clear indica-
tions to designers about the influence of temperature and
specimen geometry on the mechanical properties of the al-
loys. The engineering significance of both the results is
compared comprehensively. The present models have been
applied to corroborate that the calculations are reasonable
in the context of established solid mechanics and metallur-
gical theories. It has also been possible to gauge the isolated
influence of particular variables such as elastic stress con-
centration factor, which exactly cannot in practice be varied
independently. This highlights the ability of the technique
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to examine the new phenomena in cases where information
cannot be accessed experimentally. This model will be in-
strumental for mechanical engineers to design critical in-
dustrial components.

Keywords: Fracture; Notch geometry; Titanium alloys;
Neural computation; Stress triaxiality.

1. Introduction

Research on fracture mechanics deals with the story of
crack propagation/branching and the estimation of unstable
fracture of crack-containing structures; hence it is often em-
ployed in industry for assessing the safety of those compo-
nents [1, 2]. Ascertaining a common criterion which can
predict the mechanical failure of these structural parts is
one of the crucial concerns for engineers [3]. The gate of
fracture mechanics research was firstly opened by the pio-
neering work of Griffith [4]. Fracture behaviour of any
component in a structure is often influenced by a combina-
tion of geometry/design, microstructure/texture, service
temperature/environment and different loading conditions.
The geometry and crack configurations influence the frac-
ture response of a material tremendously.

Mechanical behaviour of a structural component under
any external load may be strongly affected by the presence
of different geometrical discontinuities such as fillets,
grooves, threads, cracks etc. These local geometrical per-
turbations lead to local increase in stress/strain fields
around them. The role of these stress raisers on deforma-
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tion/flow responses of a material is of prime importance in
mechanical design. In the 17t century, when Galileo, the
inventor of the concept of stress, foremost, employed com-
bined mathematical and experimental methodologies to in-
vestigate the fracture behaviour of solids [2, 5-7]; there
he found that fracture occurs along the plane with the max-
imum active normal stresses. Classical research, commonly
performed by structural engineers, can be evidently found
in the articles of Norton [8], Roark and Young [9], Budynas
and Nisbett [10], Inglis [11], where emphasis was mostly
given to the complex elastic stress concentration theories
and related problems. The importance of notched structural
members under monotonic deformation has led to a vast
body of research in the rich works of Coker etal. [12],
Howland [13], Strandberg [14] and Zappalorto et al. [15];
mainly focusing on evaluating the stress intensity factors
around the geometrical perturbations. The lack of a univer-
sal understanding of notch geometry effect on the mechani-
cal properties of materials may originate from the lack of
universal fracture criterion applicable for all kinds of mate-
rials ranging from ductile crystalline/polycrystalline metals
to brittle ceramics, as explained by Qu et al. [16]. Zhang
and Eckert [5, 17] proposed a widely accepted criterion,
namely the ellipse criterion, which has proved to be unified
fracture theory unifying the classical four criteria i.e., the
maximum normal stress, Tresca, von-Mises and Mohre
Coulomb. Recently, the ellipse criterion was further ex-
tended into a universal fracture criterion, as proposed by
Qu and Zhang [18] in their pioneering research.

The notch is a very important geometry with prevalent
applications in engineering and structural components.
The one source of stress concentration in industrial compo-
nents, it plays a crucial role in safety design of engineering
materials. Different conditions of notch effect on the
strength of materials (see Fig. 10 [16]) by the ellipse criter-
ion have already been demonstrated by Qu et al. [16] else-
where. The primary motivation is that adopting the notched
specimen produces localised stress at the root of notches,
resulting in well-controlled crack extension from the source
of tip (see Fig. 10 [16]). When the crack location/configura-
tion in a component can be controlled (through design), it is
highly possible to avoid unexpected fracture. Lorenzino
and Navarro [19] found that for the same specimen geome-
try and loading type, the influence of stress concentration is
directly dependent on the notch geometry and grain size of
the material. They investigated how the probability of fail-
ure rapidly increases with increasing notch root radius
(RR). In order to design the optimum specimen geometry,
understanding the crack extension behaviour of a notched
tensile specimen is essential. Nozawa and Tanigawa [20]
noticed that there is no significant specimen size effect for
certain test conditions for composites. Recently, Kumar
et al. [21] experimentally optimised the thickness of minia-
ture tensile specimens for the evaluation of mechanical
properties of low alloy steels under ambient temperature
and constant strain rate. The current study, therefore, pri-
marily emphasises clarifying the effect of notch geometries
to the tensile properties of materials; considering the notch
sensitivity of a titanium alloy at different testing tempera-
tures usually employed in industries. There are publica-
tions, where results make clear that the actual physical size
of a notch does not seem to be as important as the relative
size of the notch with respect to the characteristic of micro-
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structural dimensions [19, 22]. Many variables have been
found to influence the fracture process of materials; some
of them are related to the specimen geometry, such as the
size effect [21, 23, 24], while some others are related to
the stress-state [21, 25—32] and the microstructural proper-
ties of materials, such as work hardening [33 —48], anisotro-
py/texture [49—58] and the morphology/characteristics of
microstructures [33-47, 49-58]. Geometry necessarily
controls the stress-state and strain-state of the specimens
during loading [21, 32]. Varying the geometries is, there-
fore, largely used to investigate fracture mechanisms of ma-
terials. Size effects in fracture mechanics have received
much attention in recent years [21, 32, 59, 60]. Size effects
observed in cracked and/or notched specimens are closely
related to the size of plastic zone with respect to the speci-
men dimensions and material heterogeneities. Exhaustive
figures and tables have been published on the ‘stress-con-
centration factor’ by Pilkey [61] and Young et al. [62]
which account for a wide variety of possible specimen con-
figurations. Chang et al. [63] introduced a progressive da-
mage evolution/assessment model for notched laminates
subjected to monotonic loading.

Titanium alloys offer attractive mechanical/fracture
properties such as high strength to weight ratio, good creep,
fatigue resistance at high temperatures, excellent corrosion
resistance, high formability and good biocompatibility;
hence are widely being utilised in different applications.
These alloys are one of the most preferred and accepted ma-
terials for aerospace, biomedical, chemical and petrochem-
ical industries. These alloys are high performance materials
subjected to severe and complex service conditions. Among
all these, Ti-8Al-1Mo-1V is a near a titanium alloy which is
characterised by low density, high Young’s modulus, excel-
lent damping capacity, good microstructural stability and
extraordinary welding and moulding performances [64].
Therefore, Ti-8Al-1Mo-1V alloy is an important material
in various industries, such as gas turbine, power plant and
aerospace applications [65, 66]. Understanding the critical
behaviour of these alloys is complicated through variations
in operating temperature and notch geometries, which have
been shown to change the relative activation of deformation
and fracture properties. Thus, it is evident that the deforma-
tion and fracture behaviour of titanium alloys are strongly
affected by service temperature and notch geometry where
the microstructures and textures are not trivial. This critical
point may be dependent on the detailed situation for plastic
deformation ahead of a notch, which originally depends on
the material’s nature and common behaviour.

Tensile experiments are commonly performed using
notched cylindrical solid specimens to evaluate the effect
of stress triaxiality and uniaxial tensile properties to the
notch strength ratio (NSR). In designing the monotonically
loaded notched components out of the standard structural
materials, it is a very common engineering practice to
ignore the stress concentrations entirely, because they will
be blunted by plastic flow before the component fails. In
their elegant research work, Jenkins and Willard [67] con-
ducted a careful series of experiments to see the effect of
temperature and notch geometry on the tensile behaviour
of a Ti-8Al-1Mo-1V alloy. Notwithstanding the large vol-
ume of experimental evidence on these, there exists an ob-
stacles to understanding the effect of notch geometry and
testing temperature on the deformation and fracture proper-
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ties of this alloy under tensile deformation completely.
There is no adequate theory in the published domain to deal
with this task, which is the correlation of tensile properties
as a function of notch geometry and testing temperature. A
difficult problem like this, where the general concepts
might be understood but which are not as yet amenable to
the fundamental treatment, are common in solid mechanics.
To form a complete story, it is necessary in such circum-
stances to resolve the problem through learned empiricism.
The combination of physical and empirical models with un-
derstanding of solid mechanics and related theory of metal-
lurgy can then be employed to attempt the design of struc-
tural components. This is an important scientific issue in
materials science and solid mechanics fields because it in-
volves detail of both the material microstructure and the
mechanical stress/deformation fields due to notch geometry
variations which develop for given microstructural condi-
tions.

Many authors have already discussed the mechanisms of
fracture in components containing smooth stress concentra-
tions, and several criteria have already been widely pro-
posed by different researchers for predicting failure. When
a notched bar is loaded in plane strain bending, plastic
zones form at the notch root tip and spread into ligaments
with progression of loading severity. These zones have the
form of logarithmic spirals [68, 69] predicted by the classi-
cal slip line field theory of Hill [70]. The method used in
this research is neural computation for empirical analysis.
Neural computation is capable of replicating a huge variety
of non-linear relationships. Neural networks consist of sim-
ple synchronous processing elements, which are inspired by
biological nerve systems. Data are presented/incorporated
to the network in the form of input and output parameters,
and the optimum non-linear relationship is found by mini-
mizing the differences between the measured value and
the calculated one. As in common regression analysis, the
results then consist of a series of co-efficient and a specifi-
cation of the type of function used which, in combination
with weights, relates the inputs to the output. To prevent
over fitting, MacKay [71-74] has developed the elegant
Bayesian framework to control the complexity of a neural
network. This framework also supplies the quantified error
bars on the network predictions and renders it possible to
identify automatically which of the many relevant input
variables are in fact important factors in the regression ana-
lysis. This specific technique has been comprehensively re-
viewed in Refs. [75-78] and discussed thoroughly in dif-
ferent applications [79—-85], hence will not be discussed
further except in the context of the current analysis.

The problem of evaluating tensile properties of materials
clearly involves many variables, their mutual (and/or un-
known) interactions and considerable complexity. The ana-
lysis performed on an experimental basis in the article of
Jenkins and Willard [67] gives very clear indications to de-
signers on the influences of temperature and specimen geo-
metry to the tensile behaviour of Ti-8Al-1Mo-1V alloy. The
purpose of the present research is not only to identify the
parameters which control the tensile properties of Ti-8Al-
1Mo-1V alloy but also to correlate the complex relationship
between the tensile properties of materials with their influ-
encing parameters. In this work, the influence of each indi-
vidual variable on tensile properties of Ti-§8Al-1Mo-1V al-
loy will be investigated with different notch geometries
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and test temperatures. There are limited studies available
in the public sphere to exactly know the effective and rela-
tive contributions of these factors to the mechanical proper-
ties of these alloys. In the present context, the optimisation
of different tensile properties (i.e., strength and ductility)
needs access to a quantitative relationship between the
notch angle (NA), root radius (RR), notch depth (ND), elas-
tic stress concentration factor (ESCF) and temperature (7)
of tensile tests. Several neural network models have been
created to correlate different tensile properties individually
with respective influencing parameters and employed ex-
tensively for applications within the Bayesian framework
[71-85]. The present work as undertaken, therefore, aim-
ing to clarify the “notch geometry — temperature — tensile
property” relationship in a Ti-8Al-1Mo-1V alloy, and to
identify the variables controlling the tensile properties.
These approaches, combined with metallurgical and solid
mechanics theories have been used here to model the defor-
mation and fracture behaviour of titanium alloys. Both the
methods (experiments and neural computation) are also
comprehensively compared.

2. Data and variables

The introduction of a notch in an engineering component/
test-specimen develops stress concentration, which drama-
tically reduces the ductility of materials [1-6]. Comparing
the circumstances of tensile deformation, it is apparent that
the notch has a noteworthy impact on the stress-state/
strain-state induced in the specimens during experiments
[67]. In smooth tensile specimens, the stress and strain are
uniaxial in nature (under tension), whereas in the notched
specimens they are complex and triaxial in nature (around
the notch tip). This has a significant influence on the condi-
tions of the entire experiment. In a standard tensile test, the
specimens are generally smooth without any notches.
Therefore, the induced stress can be straightforwardly cal-
culated by dividing force by the cross-sectional area which
is constant throughout the specimen gauge length. In
notched specimens, the cross-sectional area varies with
length dimensions depending on the shape of notch and it
varies with its depth. Consequently, the deformation locally
increases by decreasing the total elongation of the specimen
and inducing an additional circumferential stress.

The material history, specimen geometry and test proce-
dures are already explained by Jenkins and Willard in their
elegant article [67]. Experimental data were digitised and
collected from the published literature on the effect of test-
ing temperature and notch geometry on the tensile proper-
ties of titanium alloys [67]. Uniaxial tensile tests (at con-
stant strain rate of 0.01 min~!) were conducted by Jenkins
and Willard [67] on many unnotched and axisymmetric
notched specimens having different sizes and geometries
with different testing temperatures. Geometry effects were
experimentally researched using specimens with various
notch geometries, thus inducing different stress triaxiality
levels. The ranges of various parameters in the dataset are
listed in Table 1. Figures 4—10 from Ref. [67] were digi-
tized to get the mechanical properties data (YS-Yield
Strength, UTS-Ultimate Tensile Strength, TFS-True Frac-
ture Stress, RA-Reduction in Area) as a function of notch
angle (NA), root radius (RR), notch depth (ND), temperature
of test (T) and elastic stress concentration factor (ESCF).
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The entire statistics of tensile properties data as a function
of notch geometries and test temperature are also presented
in Table 1. They are arranged systematically in a spread
sheet for four different models (YS-Model, UTS-Model,
TFS-Model and RA-Model) as a function of influencing pa-
rameters: NA, RR, ND, T, ESCF. The stress concentration,
observed around the notch tip, is quantified by the stress
concentration factor. This quantity is normally calculated
there [86] analytically and/or numerically and is an impor-
tant design parameter. These variables always determine
the microstructure and mechanical properties of materials,
the key components of any design process.

The aim of the current research is to predict YS, UTS, RA
and TF'S as functions of different notch geometries and test-

ing temperatures of a Ti-8Al-1Mo-1V alloy. A representa-
tive microstructure of the material shown in literature [67]
indicates the presence of equiaxed alpha with stringers of
Widmanstitten structure composed of alpha and beta
(small) phases. Table 1 shows the range, mean, and stan-
dard deviation of each variable, including the outputs for
all the four different neural network models created. The
purpose here is simply to list the variables and provide an
idea of the range covered in neural computations. However,
it is emphasized that, unlike in linear regression analysis,
the information given in Table 1 cannot be utilized to de-
fine the range of applicability of the present neural network
models. This is because the inputs are in general expected
to interact with each other. It is the Bayesian framework

Table 1. Statistics of the database used [67] for neural network analysis.

YS-Model
Inputs Units Maximum Minimum Mean SD Example
NA ° 180 67.28 36.25 60
T °C 648.89 23.89 416.28 207.14 426.67
RR mm 25.40 0.08 2.71 5.83 2.54
ND % 85 45.73 21.49 10
ESCF - 6.7 2.58 1.54 1.4
Output Units Maximum Minimum Mean SD Example
YS MPa 1557.92 235.21 784.91 322.95 -
UTS-Model
Inputs Units Maximum Minimum Mean SD Example
NA ° 180 67.28 36.25 60
T °C 648.89 23.89 416.28 207.14 426.67
RR mm 254 0.08 2.71 5.83 2.54
ND % 85 45.73 21.49 10
ESCF - 6.7 2.58 1.54 1.4
Output Units Maximum Minimum Mean SD Example
UTs MPa 1677.16 32243 856.34 307.45 -
RA-Model
Inputs Units Maximum Minimum Mean SD Example
NA ° 180 67.28 36.25 60
T °C 648.89 23.89 416.28 207.14 426.67
RR mm 254 0.08 2.71 5.83 2.54
ND % 85 45.73 21.49 10
ESCF - 6.7 2.58 1.54 1.4
Output Units Maximum Minimum Mean SD Example
RA % 87.56 4.08 32.99 19.16 -
TFS-Model
Inputs Units Maximum Minimum Mean SD Example
T °C 648.89 23.89 430.79 199.53 426.67
RR mm 12.7 0.08 2.25 3.27 2.54
ND % 85 46.25 24.59 10
ESCF - 6.7 2.56 1.66 1.4
Output Units Maximum Minimum Mean SD Example
TFS MPa 1912.54 232.06 1087.88 368.74 -
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[71-85] of the current neural network analysis that permits
the deduction of error bars which define the range of useful
applicability of the trained network, as described in the next
section. The visual impression of the spread of data (Ta-
ble 1) in 3D graphs is shown in Figs. 1 -4 and latter in 2D
graphs in Fig. 7 (a, c, e, g, 1), Fig. 10 (a, c, e, g, 1), Fig. 13
(a, c, e, g) and Fig. 16 (a, c, e, g, i) correspondingly. It is
very clear from all these graphs that input variables are in-
teractive with each other (unknown/complex interactions)
during tensile deformation. It can be concluded from these
figures that the effects on YS, TFS, RA, UTS of notch geo-
metry and testing temperature have been systematically in-
vestigated by Jenkins and Willard [67] in their pioneering
research. In the present study, both experimental and com-
putationally calculated results are compared and discussed
thoroughly.

3. Artificial intelligence

A common technique for solving complex problems is
neural computation under a Bayesian framework of artifi-
cial intelligence. This has been systematically reviewed/ap-
plied in different metallurgical problems [71—85], design-
ing of different alloys [71-85] and applied extensively in
this current research. For this motivation, only specific
points of importance are introduced in the current context.

Most of the research community is familiar with the
common regression analysis where the data are best fitted
to a particular correlation which is typically linear in nature.
Neural networks now encompass a general and frequently
used method of non-linear regression analysis in which a
mathematical relationship is customary between each of
the independent input variables, x; and one or several de-
pendent output variables, y. In linear regression analysis,
the sum of all products, x; is multiplied by a weight, w; and
a constant 0, giving an estimate of:

y=Zwx; +0 (1)

Neural networks are in broad-spectrum non-linear and this
culminates in taking a hyperbolic tangent (tanh) function
of the right hand side of this equation (Eq. (1)), and then ap-
plying a linear transfer into y. In fact, many hyperbolic tan-
gent functions and related weights can be added to formu-
late the function to be as complex as is required. The
relationship is simply fostered by presenting a neural net-
work with a database (experiments) consisting of a set of
inputs for which the value is known. The network then un-
derstands/learns the relationship (through repetitive repre-
sentation) between the inputs and the corresponding values
for the output in a route, which is usually recognized as
training the network. Once the network is trained comple-
tely, output estimation for any given inputs is very rapid.
Linear functions of the inputs x; are operated by the hy-

j
perbolic tangent transfer function (Eq. (2)):

hi = tan h(Zw) + 61) (2)

so that each input adds/adjoins a contribution to the every
hidden unit. The bias is denominated as ¢, and is analogous
to the constant that appears in the linear regression analysis.
The strength of the transfer function is in each case re-
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solved/decided by the weight w;;. The transfer to output y
is then linear (Eq. (3)):

y= zjwﬁf) +6? (3)

The specification of neural network structure explained, to-
gether with the set of weights is an absolute description of
the formula correlating inputs to the output.

For instance, it is well established that the effect of notch
root radius (RR) on the mechanical properties of titanium
alloys is quite different at large values than that at smaller
values, reported in literature [67, 87]. Regular and com-
monly applied regression analysis cannot cope with such
variations in the form of relationships. A possible difficulty
with the use of powerful regression analysis is the chance of
overfitting the experimental data. For example, one can cre-
ate a potential neural network model for a completely ran-
dom set of experimental data. To circumvent such com-
plexity, this experimental data can be sub-divided into two
sub-sets, a training dataset and a testing dataset. The model
is created using only the training experimental data set. The
test data are then used to check that the model behaves itself
when presented with formerly unseen data.

Neural networks in numerous ways mimic human experi-
ences and are competent in learning or being trained to ad-
dress the correct science rather than nonsensical trends. Un-
like human experiences, these models can be transferred
readily between generations and steadily developed to
make design tools of lasting value. These models also im-
pose a discipline on the digital retention of precious experi-
mental data, which may otherwise be lost with the passage
of time. The technique is extremely powerful and useful in
any field of research. Detailed description of this can be
found in literature [75-78] but it is important to note that
the precision of model on unseen experimental data has
been tested extensively against large quantities of informa-
tion. All the input and output variables were normalised
within the range of +0.5. The normalisation is not necessary
for the analysis but it facilitates the subsequent comparison
of the significance of each of the variables. The normalisa-
tion is straightforward for all the quantitative variables.
The entire data set was subjected to neural network analysis
as an accepted technique of deciphering the independent
roles of notch geometries and testing temperature in stimu-
lating deformation and fracture behaviour of titanium al-
loys. Here, neural network technique under the Bayesian
framework has been employed to solve this problem. In
the current formulation, the complete network architecture
is described in Table 2. The Bayesian framework has been
expansively discussed in literature [71—-85] and reviewed
in articles [75—79]. Suffice it to explain that it is the crucial
tool for non-linear regression analysis, and its predictions
are coupled not only with an average measure of scatter-
data but, more importantly in the current circumstance, also
a modelling uncertainty which describes the ambiguity with
which different empirical models can express the same set
of experimental data. In the current models, it has been pos-
sible to show the isolated influence of individual input vari-
ables to the respective outputs (YS, UTS, TFS, RA). The
Bayesian neural network has an excellent advantage to cal-
culate the significance of each input variable which has
been clearly demonstrated by MacKay [71—74] in his pio-
neering research.
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Fig. 1. Possible interactions of influencing
variables with YS during tensile deformation
of Ti-8Al-1Mo-1V alloy in 3D plots made

from the experimental data reported by Jen-
kins and Willard [67].
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4. Results and discussion
4.1. Yield strength model

Some 100 different ¥S models were trained (Fig. 5a) with a
training dataset which consisted of a random selection of 52
experiments. The remaining 51 dataset configures the test
dataset (Fig. 5b), which has been employed to observe
how the model generalises on the unseen data. Each model
contained the five inputs listed in Table 2 but with different
numbers of hidden units or the random seeds/neurons em-
ployed to instigate the values of weights. Figure 5a-f shows
the entire YS-Model related results. As anticipated, the per-
ceived level of noise, o, in the normalized YS data de-
creases as the model becomes more complex, i.e., the num-
ber of hidden units increases (Fig. 5d). This is not the case
for test error (7,), which goes through a minimum at thir-
teen hidden units (Fig. Se), or for the log predictive error
(LPE), which reaches a maximum at six hidden units
(Fig. 5¢).
The number of hidden units used determines the com-
plexity of neural computation and more reliable predictions

occur with increased number of hidden units. Error bars
throughout the current analysis represent a combination of
perceived level of noise, g, in the output and fitting uncer-
tainty evaluated from the Bayesian computations. It is
strictly apparent that there are few outliers in the plot of
the calculated versus measured YS for test dataset (Fig. 5b).
Each of these outliers has been investigated and found to re-
present unique data not represented in the training dataset
(Fig. 5a). When applying noisy data, common in many ex-
perimental situations, some wild predictions would be an-
ticipated.

It is greatly possible that a committee of models can
make a more genuine prediction rather than an individual
model [71-74]. The best models are ranked using the val-
ues of LPE (Fig. 5c¢). Committees are then constructed by
combining the predictions of the best L models, where
L =1,2,3...; size of the committee is, therefore, given by
the value of L. A plot of test error (7,) of the committee ver-
sus its size offers a minimum which defines the optimum
size of committee, as shown in Fig. 5f. Test error (7) asso-

ciated with the best single model is convincingly greater
than that of any of the committees (Fig. 5f). A committee
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Fig. 3. Possible interactions of influencing
variables with TFS during tensile deformation
of Ti-8Al-1Mo-1V alloy in 3D plots made
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with 93 models was found to have an optimum membership
with the smallest test error (7,) (see Fig. 5f). The committee
was, therefore, retrained on the entire dataset without
changing the complexity of any of its member-models’ pa-
rameters. The final comparison between the calculated and
measured values of YS§ for the committee of 93 models is
shown in Fig. 6a. Details of the 93 members of the optimum
committee are given in Table 2.

The predictions applying the optimum committee of
models are exhibited in Fig. 6a. The application of YS-Mod-
el is manifested in Figs. 6b and ¢ which imply that the mod-
el behaves robust for the unseen experimental data. Fig-
ure 6d compares the significance, g, of each of the input
variables, as perceived by the first five neural network mod-
els in the committee (Fig. 5f). The neural network permits
investigating the effect of each input variable to be analysed
individually (Fig. 7b, d, f, h, j), which may be impossible to
achieve experimentally. Predictions are ready as per the ex-
ample shown in Table 1 (¥'S Model: last column). It is pro-
minent that when the effect of a certain variable is calcu-
lated (Fig. 7b, d, f, h, j), others are kept unaltered, which is
not possible in real situation; but is important to understand
the fundamentals. It is also noted from Fig. 7a, c, e, g and i
that there is a tremendous scatter in YS data as a function
of its influencing variables. It is to be remembered that
other variables are not kept constant here, they are simulta-
neously operated. Possible 3D graphs (interacting vari-
ables) of the entire raw dataset are presented in Fig. 1. Huge
scatter is also displayed in these plots (Fig. 1). It may also
happen that more variables are interacting in a complex
manner during tensile deformation of the alloy. Hence,
neural computation has been performed to understand the
individual effect of each parameter on YS (Fig. 7b, d, f, h,
j)- Figure 7b shows that with the increase in NA, the calcu-
lated YS decreases sharply. It is seen from Fig. 7d that with
the increase in testing temperature, the calculated YS de-
creases considerably in a linear fashion, which seems to be
logical. Figure 7f clearly represents that with the increase
in RR, predicted YS drops significantly. Predicted YS§ in-
creases sharply with the increase in ND (Fig. 7h). The cal-
culated YS values increase with the increase in ESCF (see
Fig. 7j). The prediction shown in Fig. 7d has very small er-
ror bars and is in the range of the experimentally measured
dataset (Table 1). All the error bars manifest the combined

Table 2. Bayesian neural network architecture.

effect of modelling uncertainty (+10) and noise of the com-
mittee model (see Fig. 6a). All these variables influencing
YS are approximately linear in nature (Fig. 7b, d, f, h, j).
The error bars, therefore, become significantly large when
the data are sparse or locally noisy (Fig. 7j — with high val-
ue of stress concentration factor).

The deformation and fracture behavior of Ti-8Al-1Mo-
1V alloys at various temperatures and notch geometries
are thoroughly discussed elsewhere [67]. As the tempera-
ture increased, the point of crack initiation progressed to-
wards the axis. Sanyal et al. [31] explained that fracture fea-
tures change with the notch geometry for the alloy Inconel
625. Wang et al. [88] also explored the influence of ND
and notch flank angle on the stress concentration factor em-
ploying finite element (FE) simulation and mechanical
tests. They found that with increasing ND and notch flank
angle, the fracture load and “high stress volume” showed
marked variation, but the stress concentration factor re-
mained relatively constant throughout [88]. Concerning
the effect of notch geometry on the stress concentration fac-
tor, Tetelman et al. [89] evaluated the influence of notch RR
on the local cleavage fracture stress concentration factor by
means of the slip-line field analysis. The study of Lewan-
dowski and Thompson [90] corroborated that the stress con-
centration factor of fully pearlitic microstructure was inde-
pendent of the notch RR introduced. The macroscopic YS
of notched specimens of ductile materials are usually higher
than those of the unnotched specimens owing to the con-
straint of plastic flow behaviour. While Bridgman’s analy-
sis [91] endorses a correction factor which successfully pre-
dicts this increase, the analysis is based on the assumption
that yielding occurs uniformly in the specimen cross-sec-
tion rather than locally to the notch root. In particular, it is
worth indicating the study of Creager [92] who generalised
the problem of a stress concentrator on the basis of fracture
mechanics concepts by accounting for the finite value of
notch RR.

The metallurgical significance of the inputs is now ana-
lysed (Fig. 6d). The solid mechanics approach has also been
taken care of to understand this. The g, value represents the
extent to which a particular input explains the disparity in
the output data, rather like a partial correlation coefficient
in a linear regression analysis. The testing temperature on
the whole explains a large proportion of variation in YS of

Model Parameters YS-Model UTS-Model TFS-Model RA-Model
Model type BNN BNN BNN BNN
Number of models 100 100 100 100
Models successfully trained (decreasing LPE) 93 100 100 100
Suggested models in committee 93 1 2 2
Minimum test error 0.19 0.04 0.15 0.16
Search for maximum noise 0.06 0.02 0.05 0.05
Input, Hidden, Output (best model) 5,2,1 5,2,1 4,2,1 5,2,1
Data set 103 103 64 103
Transfer function tanh tanh tanh tanh
Validation data set 12 12 12 12
Sigma noise 0.3 0.3 0.3 0.3
Random weight 0.3 0.3 0.3 0.3
Initial Weight 0 0 0 0
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Fig. 5. Modelling results (YS-Model): (a) Training set, (b) Testing set, (c) Log predictive error (LPE) as a function of number of hidden units, (d) o,
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ber of models.
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the titanium alloys. The effect of testing temperature on the
generation of microstructure for the particular alloy is inter-
preted in literature [67]. After that, notch RR is featured. All
the variables (T > RR > NA > ND > ESCF) considered
were found to have significant influence on the output, indi-
cating a good choice of input variables. The rank of each in-
put variables influencing YS is found (model results) in
Fig. 6d. However, clear trends (Fig. 7b, d, f, h, j) in predic-
tions are also noted. A large value of g, implies that the in-
put concerned explains a relatively large variation in YS in
the experimental dataset. The g, value is not an indication
of sensitivity of the YS to a particular input.

4.2. Tensile strength model

The neural network models (UTS-Models) were extensively
trained with 103 individual experimentally measured data
points, of which a random half of the data formed the train-
ing dataset and other half the test dataset (Table 2). The
procedures are otherwise identical to those already de-
scribed for the YS-model, resulting in the characteristics il-
lustrated in Fig. 8. The performance of the optimum com-
mittee of the best models is shown in Fig. 9a. Details of

one member of the optimum committee are clearly noted
in Table 2. Figure 8 describes the entire UT'S-Model results.
The predictions made using the optimum committee of
models are shown in Fig. 10b, d, f, h and j. The use of the
UTS-Model is presented in Fig. 9b and c, which indicates
that the model behaves robustly for unseen experimental
data. Figure 9d also compares the significance, o,, of each
of the input variables, as perceived by the best model,
which will be discussed later.

Significant scatter is noticed from the possible 3D graphs
in Fig. 2 and 2D graphs in Fiog. 10a, c, e, g and i. It is prob-
able that there might be other complex interactions too,
which are unknown. After neural computation, a convin-
cing trend is achieved (see Fig. 10b, d, f, h, j). Predictions
are ready as per the example shown in Table 1 (UTS-Mod-
el: last column). It has been found from Fig. 10b that with
the increase in NA, the calculated UTS values are decreas-
ing sharply in a linear fashion. From Fig. 10d, it is noted
that with increase in testing temperature, the predicted
UTS decreases sharply. The calculated UTS values decrease
drastically in a linear fashion (Fig. 10f) with the increase
in notch RR. The error bars’ length is also noted here
(Fig. 10f). Figure 10h convincingly indicates that with the
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Fig. 6. (a) Training data for the best committee model (training was done on the whole dataset) for YS prediction, (b) Application — I: Comparison
of measured and calculated YS as a function of ND and ESCF, where other variables (NA = 60°, T=75°C, RR = 0.1 mm) are kept constant, (c) Ap-
plication — II: Comparison of measured and calculated YS as a function of ND and ESCF, where other variables (NA =60°, T=600°C,
RR =0.01 mm) are kept constant, and (d) Significance, g, of each input variable as perceived by five neural network models in committee, in influ-

encing YS. These application data (source [67]) were unseen by the model.
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Fig. 7. Comparison of experimentally mea-
sured and model calculated YS data of Ti-
8Al-1Mo-1V alloy in 2D plots as a function
of (a, b) NA, (¢, d) T, (e, f) RR, (g, h) ND and
(1,j) ESCF. Note: in experimentally measured
graphs (a, c, e, g and i), all influencing vari-
ables are interacting with each other and in
the model predicted graphs (b, d, f, h and j),
other variables are kept unaltered (see Ta-
ble 1: YS-Model database according to ‘ex-
ample’ column).
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increase in ND, calculated UTS values increase sharply.
From Fig. 105, it is clear that with increase in ESCF, the
predicted UTS values increase. This is expected since the
UTS values are measured at large plastic strains whereas
YS are more sensitive to the initial microstructure of the al-
loy. The microstructural interpretations for this alloy are
readily discussed in Ref. [67].

Depending on whether the nominal UTS in the notched
specimen is higher or lower than in unnotched specimens,
materials are classified as being notch ductile or notch brit-
tle, respectively as explained in literature [93]. The more
difficult issue of yielding in notched specimens has re-
ceived very little attention (Kochendorfer et al. [94]; Diet-
mann [95]; Backsch et al. [96]). Hence, the value of results
generally available from a notch tensile test [67] to be
found in comparing different materials rather than in gener-
ating data which can be used for engineering design pur-
poses. Lubahn [97] goes so far as to state that the useful ap-
plicability of the information extracted from the notch
tensile experiments is so limited as to be almost useless for
many structural engineering purposes. Additional geome-
trical notch induces a non-linear stress field surrounding it
(explained in Fig. 10 [16]). As a result of interaction be-

tween microstructure and mechanical conditions of the al-
loy, favourable local sites of plastic instability may occur.
They may quantitatively differ depending on the external
condition of the notch, such as size and shape as has been
observed during mechanical experiments. Hahner et al.
[98] reported that the phenomena for non-uniaxial speci-
mens must take into account the geometrical notch effects
in addition to the standard model.

Crucial and precious experimental data have shown that
the UTS values of composite laminates are severely reduced
by the presence of a stress concentration in the form of a
crack/hole, which has been documented in Refs. [99, 100].
This appears to be related to the brittleness of the fibers em-
ployed in advanced critical applications. Metals generally
yield, making the presence of a stress concentration less se-
vere. Oyane etal. [101] researched compressive plastic
constitutive equations of porous materials with considera-
tion of the hydrostatic pressure and suggested that the den-
sity of material decreases during deformation and that frac-
ture occurs when the density of material reaches a certain
critical value. The present author has already experimented
and proved this issue for AISI 304 LN stainless steel under
tensile deformation at various strain rates [36]. However, it
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fluencing UTS. These application data (source [67]) were unseen by the model.
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Fig. 10. Comparison of experimentally mea-
sured and model calculated UTS data of Ti-
8Al-1Mo-1V alloy in 2D plots as a function
of (a, b) NA, (c, d) T, (e, f) RR, (g, h) ND,
and (i, j) ESCF. Note: in experimentally mea-
sured graphs (a, c, e, g and i), all influencing
variables are interacting with each other and
in the model predicted graphs (b, d, f, h and
j), other variables are kept unaltered (see Ta-
ble 1: UTS-Model data according to ‘exam-
ple’ column).
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is to be kept in mind that under notch tension, the stress is
not uniform anymore [32]. There are stress concentrations
around the notch root and also a negative stress gradient
formation as increasing distance away from the notch roots,
which has been reported in literature [32, 102]. The uniform
tensile stress-state in unnotched specimens and work-hard-
ening ability of the alloys make plastic deformation of dis-
location slipping homogeneously distributed over the
whole gauge length of the specimen, and finally a large ten-
sile plasticity is gained [102]. It is well known that in the re-
gion of a notch, stress concentration is increased compared
to that in material beyond it. Additionally the stress-state
becomes triaxial instead of uniaxial, as explained by Maji-
ma et al. [103]. For both non-dimensional groups, with all
parameters fixed except for bar size, Needleman [104]
found that for sufficiently small bars, the notch triggers
necking, whereas for sufficiently large bars necking ulti-
mately occurs away from the notch. The transition from
notch induced necking to notch ignoring necking depending
on the size and is driven by the material inertia [104].

The perceived significance of a single model is already
presented in Fig. 9d. In this case also, testing temperature
features prominently and after that comes notch diameter.
All the variables (T > ND > RR > NA > ESCF) considered
were found to have a significant effect on the output, indi-
cating a good choice of inputs. The rank of each variable in-
fluencing UTS is shown in this figure. The microstructural
interpretations with the notch geometries and testing tem-
perature are fully discussed in Ref. [67].

4.3. Fracture strength model

The true fracture stress (TFS) for a notched specimen is de-
fined as the fracture load divided by original cross-sectional
area at the notch, i.e., net fracture stress value. If there is no
notch effect, the fracture stresses for notch-free and notched
specimens must be the same. The models were trained by
64 individual experiments, of which a random half of data
formed the training and the other half a testing dataset (see
statistics in Tables 1 and 2). The model consists of four in-
put variables (Table 2). The modelling procedures are
otherwise identical to those explained earlier, resulting in
the characteristics illustrated in Fig. 11. Figure 11 describes
the entire TF'S-Model results. The training, test, LPE [71—
74] associated with each of the 100 models created are
clearly explained in Fig. 11. The performance of the opti-
mum committee of the best model is elucidated in Fig. 12a.
Details of two members of the optimum committee are
shown in Table 2. Application of the model for unseen data
is manifested in Fig. 12b and ¢ which displays a reasonably
good match between the measured and calculated 7FS data.
Figure 12d compares the significance, g, of each of the in-
put variables, as perceived by the best model, which will
be discussed in detail later.

Figure 13a, c, e and g shows the scatter of TFS data as a
function of particular variables for the alloy, where other in-
fluencing variables are operated in the practical service
conditions. Complex interactions of fracture stress with
other variables in three dimensions are also presented in
Fig. 3. The interactions are unknown and highly complex,
which can happen with multiple variables together during
tensile deformation. Predictions are ready as per the exam-
ple shown in Table 1 (TFS Model: last column). It is appar-
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ent from Fig. 13b that with the increase in testing tem-
perature, calculated TFS remains almost constant up to
~400°C and beyond that there is a drastic decrease in
TFS data. The error bars’ lengths are also noted, which
was explained earlier. With the increase in RR, there is a
slight drop in the predicted TFS values (Fig. 13d). It has
been noticed from Fig. 13f that with the increase in ND, cal-
culated TFS values increase in an exponential manner,
where the other variables are kept unaltered. From
Fig. 13 h, it is convincingly understood that with the in-
crease in ESCF, the calculated TF'S decreases a little. Long
error bars are also featured here.

Tensile fracture often occurs once a shear band pierces
the tensile specimen. However, in crystalline solids, multi-
ple slip-bands would be produced due to the very low en-
ergy density threshold for initiation [16]. The interactions
between dislocations and other defects, like point defects
(e.g., solute atoms, interstitial atoms, clusters, vacancies
etc.), line defects (e.g., dislocations), planar defects (e.g.,
grain boundary, phase boundary, phase interfaces, slip
bands, twin bands etc.), and volumetric defects (e. g., inclu-
sions, second phase particles, porosity etc.) would essen-
tially contribute to the work-hardening ability of the materi-
als, which causes the plastic deformation to distribute
homogeneously over the whole gauge length of the tensile
specimen rather than localising into several single slip-
bands [16]. In a notched specimen, the stress concentration
around notch root greatly increases the local stress level,
which leads to a final fracture of the specimen at a lower
nominal stress [16]. The authors of [60] have found that
the geometrical notch has an effect on the formation of
shear bands on the surfaces of the specimen. It supplements
the results obtained by Graff et al. [105, 106] with a quanti-
tative analysis of stress—strain curves and of the crucial role
played by the notch dimensions. From the tensile fracto-
graphs of Ti-8Al-1Mo-1V alloy, it has been interpreted that
embrittlement effects associated with stress triaxiality were
more predominant in the 85 % ND specimens than in those
with shallower notches [67]. Furthermore, fully developed
triaxiality conditions pertained at lower temperatures for
specimens with deeper notches. At higher temperatures,
the position of initiation of fracture and its mode of crack
propagation are more dependent on the test temperature
than specimen geometry. It is apparent that both the stress
system and the testing temperature affect crack nucleation
and propagation for Ti-8Al-1Mo-1V alloy [67].

The perceived significance of the two models is shown in
Fig. 12d. In this case also, testing temperature featured pro-
minently and after that, notch diameter is featured. All the
variables (T > ND > RR > ESCF) considered were found
to have a significant effect on the output, indicating a good
choice of inputs for the model. It is clearly noted that the ef-
fect of notch RR and ESCF are being minimum compared
to others.

4.4. Ductility model

Naturally, strength alone is not a sufficient indicator of de-
formation and fracture behaviour of materials. Ductility
and toughness must also meet the design specifications.
Ductility-limits and variability are of particular concern in
the design of components/structures having notches or
other stress concentrators, where plastic flow may not be
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Fig. 11. Modelling results (TFS-Model): (a) Training set, (b) Testing set, (c) Log predictive error (LPE) as a function of number of hidden units,
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sufficient to reduce the large stress concentrations [107].
Ductility is a great concern at stress concentrators, where
the material may not be able to experience sufficient plastic
flow to blunt the stress concentrations [108]. Knaul et al.
[108] have shown that notched specimens subjected to
monotonic loading would experience higher failure strains
than unnotched specimens. In the exhaustive experiments
performed by Knaul et al. [108], there is a trend of increas-
ing maximum strains at failure seen in test specimens as
the volume of highly strained material is decreased. This
apparent size effect suggest that failure strains acquired
from the mechanical tests on large unnotched specimens
will provide a lower bound on maximum strains seen in
the notched components [108].

In the current research, neural network models are devel-
oped for RA to understand the notch geometry and tempera-
ture effects on it. The model consists of 5 inputs listed in
Tables 1 and 2, which are often considered to influence the
ductility. The specimen geometry and testing temperature
determine the fracture properties of the material. A total
103 individual experimental data were gathered systemati-
cally from the literature [67]. Figure 14 elucidates the entire
RA-Model results. The modelling procedures are similar to

those as explained earlier. The training, test, LPE [71—74]
associated with each of the 100 models are clearly illu-
strated in Fig. 14. From all the 100 models, a committee of
two best models was found to give the lowest test error;
each member of the committee (Fig. 14f) was then retrained
on the entire dataset to create the final committee model
(Fig. 15a). The application of the committee model is pre-
sented in Fig. 15b and c, which displays reasonably good
match between the measured and calculated RA. Figure 15d
compares the significance, o, of each of the input variables,
as perceived by the best model.

By employing the committee model (Fig. 15a), the pre-
dictions (Fig. 16b, d, f, h and j) are made. Predictions are
ready as per the example shown in Table 1 (RA Model: last
column). It is seen from Fig. 16a, c, e, g and i that there is a
huge scatter in RA data as a function of its influencing
parameters, where other variables are interacting with
each other with reasonable complexity. For comprehending
such complex interactions, possible 3D graphs are already
sketched in Fig. 4. Neural computation has been success-
fully employed to get rid of such complexity and to see the
convincing trends of RA with respective parameters, where
other variables are kept constant. With the increase in NA,
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calculated RA decreases a little up to =55 % and beyond
that it again increases (Fig. 16b). This seems to be logical
as per the existing solid mechanics theories. At the initial
values of NAs (below 40 % and above 60 %) there are uncer-
tainties in predictions. In these regimes, large error bars are
noted (Fig. 16a). This means that the availability of experi-
mental data were limited in these ranges. Hence, new and
systematic experiments in these ranges are encouraged for
future research. It has been found from Fig. 16d that with
the increase in testing temperature, calculated RA increases

in an approximately exponential manner. With the increase
in notch RR, calculated RA decreases drastically and after
10 mm-RR, there is uncertainty in prediction (Fig. 16f).
With the increase in ND, the calculated RA decreases up to
75 % and beyond that it is almost saturated (Fig. 16h). Fig-
ure 16j shows that with the increase in ESCF, the calculated
RA decreases sharply. The sharper the notch, the lower
would be the ductility. Ductility decreases as the stress
triaxiality increases. Anderson [109] indicated that, not-
withstanding, the ductile fracture toughness is simply size

Fig. 13. Comparison of experimentally mea-
sured and model calculated 7FS data of Ti-

8Al-1Mo-1V alloy in 2D plots as a function
of (a, b) T, (¢, d) RR, (e, f) ND, and (g, h)
ESCF. Note: in experimentally measured

graphs (a, ¢, e and g), all influencing variables

are interacting with each other and in model
predicted graphs (b, d, f and h), other vari-

ables are kept unaltered (see Table 1: TFS-
q Model database according to ‘example’ col-
umn).

2500 2000
w w
2000
R $ 1500/
0 ] 0
h 1500 ! . . &
. l - 1000
® 10004 ' s
2 l =
@© & 500
2 500 )
= ! 8
0 r ; r 0 . : -
0 200 400 600 800 0 200 400 600 800j
a Temperature ("C) b Temperature (°C)
2500
- ™
4 20004, &
5wl 3
& 1500-' I H &
=l
B 1000} s g
2 I B . 3
[v] -
s 5005 : 3
0 - : y g 1000+ r T T v - |
00 25 50 75 100 125 150 0 5 10 15 20 25 30
C Root radius (mm) d Root radius (mm)
2500 1600
—_ ‘{E‘ -
g 2000 ‘ g 1500, |
y . » & 1400- ot
i’ 1500+ . g 0 w l Al
= . | | 2-
. : - 1300 jes
3 1000} | . . 2 pe sl
2 . . . = 1200 PR o 14
© ) . . B poa-e-e
4 00 . : S1100{ | || 1]
0 : , : 1000 N T
0 25 50 75 100 0 25 50 75 100
e Notch depth (%) f Notch depth (%)
2500 1500
3 g
& 2000 = < 1400
= b e * »
Q 1500 <"1 i 1300
= . [] =
1000k 3 o . 2 1200
[ s i
2 r f o' 3
o y B
g 500 o L . = 1100
0 . . . . ; . 100+——————————
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10
g Elastic stress concentration factor h Elastic stress concentration factor

998

Int. J. Mater. Res. (formerly Z. Metallkd.) 109 (2018) 11



A. Das: An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys

Number of hidden units

06 T T T T T v 0.6 T T T T T
s |a =
o) 1 o) b L
N o4} . Mool ) .
© @
= B | e ) ’H’
G o2} 4 1 S oz} 1.1 _
g ;{E{ E . ’17,.,'
o g 0 T f}‘
@ ol FI’.’ ﬁ - % ok : ,/’ T .
© a4 ® &
> Ff}f - /'/ i
T 02F FHi . T oz I T o i
] ‘i£ T e H 1{[ |
3 2l = I %l’ﬂ
o o4 g . 1] &~ 1# :
o 41[ Training set o A Testing set
06 L L L L - 0.6 ok I L ! ! !
-0.6 0.4 -0.2 0 0.2 0.4 0.6 -0.6 0.4 0.2 0 0.2 0.4 0.6
Database values (normalized) Database values (normalized)
65 T g T - 7 7 - - - 0.11 T T T T T T T T T
+ - * d
L : : 0.1 | & i
5 60 |- ot ' C 1 +
£ R Pt 0.09 | ' 1
LLl o4 voT + £+ o+
2 st . ' T 0.08 .
© - ° ;
— ¢ + + + 4
8 uf.- ] e e
& * N + 1— +
o ¥ R ]
3 0.06 i ¥+ F 7% 405 4 . + 4+ 4
45 I + T 005 k ' + T I + 4 - + + + + ]
i * +
C‘ + - + :
40 L L L ! L ) s 0.04 L L I 1 I I Lt 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of hidden units Number of hidden units
0.38 T T T T T T T T T 0.185 T T T T T T T T T
0.36 | + € n f
+ 4
0.34 | - LO_ 0.18 | : , i
032 | + 1[5 P
== + + ' &k + +++
& 03} + . 5 L R
= . N 0175 | R - = .
Q28 | R - i R PSRRI .
+ oy 4 + + 7
" 026 | T C k5 +F .
3 . F £ o7} B ! i
2 0.24 | , R : : o R
* + + E _— +
0.22 | M . ) N E.
v L + &) + o+ . .
02} +* Lo , . i R Models in Committee I
+ s + $ n + I‘ I_
0.18 | Lt X + o
0.16 . A . — A i A 0.16 . . . : . . : . .
0 2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80 90 100

Number of models

Fig. 14. Modelling results (RA-Model): (a) Training set, (b) Testing set, (c) Log predictive error (LPE) as a function of number of hidden units,
(d) o, as a function of number of hidden units, (e) Test error (7,) as a function of number of hidden units, and (f) Combined test error as a function
of number of models.

Int. J. Mater. Res. (formerly Z. Metallkd.) 109 (2018) 11

999



A. Das: An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys

dependent in panel loaded under tension; the size depen-
dence is not nearly as severe as it is for cleavage fracture.
It has been shown by Sui et al. [110] that the presence of
sharp notches decreased the strength and ductility of cop-
per. The fracture mode was found to be independent of
notch acuity and test conditions [110]. Notch acuity depen-
dence seems to be the dominant effect on this value and the
trend is same for UTS [110]. The uniform elongation (g,)
decreases sharply from the uniaxial to multiaxial state and
then increases slightly with the increase in notch acuity
[110]. When the notch acuity is given, the model (by Sui
and Sandstrom) gives almost the same ¢, despite of varying
strain rates and temperature [110]. Although the ¢, values
measured at different temperatures and strain rates are not
identical, the differences are adequate. The presence of a
notch decreased the UTS, elongation and RA [110].
Notched tensile experiments performed by Knaul et al.
[108] also indicate that the cast Ti-47.9A1-2.0Cr-2.0Nb alloy
exhibits notch strengthening, where maximum strains at fail-
ure in notched specimens were, on average, larger than
strains at failure in uniaxial tensile (unnotched) specimens.
Increases in maximum failure strains (&) correlated well with
the estimated decrease in the volume of material subjected to
large strains, suggesting a size effect [107]. Finite element

(FE) predictions for notched tensile specimens and the Neu-
ber design criterion are essentially used to quantify relation-
ships between the tensile ductility, the ability to reduce local
stress concentrations through plastic flow, and ultimate fail-
ure loads in notched components [108]. Generally, higher
stress is required to deform the alloy in the notched speci-
mens although the registered force is lowered compared to
the specimen without a notch [111]. This is due to the reduc-
tion of cross-section and smaller surface area from where the
stress is estimated. In addition, as a result of the geometrical
notch, total elongation is much lower than that in the speci-
men without a notch.

Figure 15d describes the significance, g,, of each input
variable. In this case also, testing temperature featured pro-
minently and after that elastic stress concentration factor is
seen. All the variables (T > ESCF > ND > NA > RR) con-
sidered were found to have a significant influence on the
output, indicating a good choice of inputs.

5. Conclusions

Tensile properties of titanium alloys as a function of notch
geometry and temperature have been analysed using artifi-
cial intelligence within a popular Bayesian computational
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Fig. 16. Comparison of experimentally mea-
sured and model calculated RA data of Ti-
8Al-1Mo-1V alloy in 2D plots as a function
of (a, b) NA, (¢, d) T, (e, f) RR, (g, h) ND and
(1,j) ESCF. Note: in experimentally measured
graphs (a, c, e, g and i), all influencing vari-
ables are interacting with each other and in
model predicted graphs (b, d, f, h and j), other
variables are kept unaltered (see Table 1: RA-
Model database according to ‘example’ col-
umn).
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framework. The experimental data used were essentially
obtained from the published literature, which represents a
wide variation of notch geometries and testing temperatures
to the tensile properties of titanium alloys [67]. The current
analysis and previously published experimental results by
Jenkins and Willard [67] indicate that the notch geometry
affects both the strength and ductility properties of the ma-
terial, and this notch-effect depends not only on the materi-
al itself but also on the associated stress concentration fac-
tors. From the macroscopic point of view, the blunt notch
specimens of these alloys seem to present “ductile” fracture
behaviour, while the acute crack/notch specimens present
“brittle” fracture behaviour.

The current model results are summarised briefly. It has
been found that with the increase in NA, T and RR; both YS
and UTS decrease drastically; on the other hand with increase
in ND and ESCF; both YS and UTS increase. The signifi-
cances of parameters (ranks) in determining YS and UTS of
the alloy are in sequences of 7> RR > NA > ND > ESCF
and T > ND > RR > NA > ESCF respectively. With the in-
crease in 7, TFS remains almost constant up to ~400°C
and beyond that it decreases. TF'S values remain almost con-
stant with RR and increase drastically with ND. As ESCF in-
creases, TFS decreases a little. The significance of para-
meters in determining 7FS of the alloy are in a sequence of
T > ND > ESCF > RR. Lastly, it has been found that with in-
crease in NA, RA decreases a little and beyond a certain an-
gle, it again increases. As T increases, RA increases dramati-
cally. With the increase in RR, ND and ESCF; RA is found to
decrease significantly. The significance of input parameters
in determining RA of the alloy is in a sequence of 7 >
ESCF > ND > NA > RR. All the models successfully repro-
duce the experimentally observed trends.

Trends predicted by the present models emerge to be
consistent with those expected by the metallurgical and sol-
id mechanics approaches, although it must be emphasised
that only the simplest of trends have been examined since
the number of variables involved is less. The models can
be applied widely because the calculation of error bars
whose magnitude depends on the local position in the input
space is an inherent feature of the neural network used. The
error bar is not simply an estimate of the perceived level of
noise in the output values but also includes an uncertainty
associated with fitting the function in the local region of
the input space. This means that the technique is less dan-
gerous in extrapolation or interpolation since it effectively
warns when the experimental data are lacking or exception-
ally noisy. The small error bars indicate that the scatter in
the database is very small and the large error bars suggest
a lack of sufficient data in the range examined, where
further experiments may be required. The work has clearly
identified the regions of the input space where further ex-
periments should be encouraged. The implication of these
findings will be helpful in fundamental understanding of
ductile fracture of fcc alloys.

The present author’s experience of the neural network
analysis suggests that it has considerable potential for use-
ful applications in the fields of solid mechanics and materi-
als science. The maximum possible variables responsible
for mechanical properties of titanium alloys have already
been included in the current framework of neural computa-
tion from the mechanistic point of view and they have been
critically reviewed and comprehensively discussed in this
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article. There are other variables also responsible for differ-
ent mechanical properties of titanium alloys. Nevertheless,
the current neural network can be created more effectively
in discovering better trends while ignoring the noise in
the experimental data with a sufficiently larger database.
Therefore, there is scope for further research in order to
broaden the sensitivity analysis and generalising for other
materials also using a larger and comprehensive database
including other important input variables such as grain size,
initial microstructure/texture, strain rate, chemistry etc.,
which could be generated by suitable experimentation and
thorough literature search.

This information in itself is valuable and would not have
been revealed without the Bayesian computational frame-
work under artificial intelligence paradigm. This research
will enormously help researchers to understand where
further experiments would be required to optimise the
strength and ductility of titanium alloys by altering the mi-
crostructure and mechanics of the components, which is a
challenging task in these days.
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