Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
Abstract
The wear resistance and corrosion behavior of titanium and 316L stainless steel were studied after depositing a composite coating of zirconia and hydroxyapatite using the cathodic plasma electrolytic deposition technique. No sign of adhesive wear was observed on coated samples due to the unique surface morphology of the treated samples, after a pin on disk wear test in Ringer’s solution. The average values of friction coefficient for treated titanium and steel samples were observed to be 0.2 which exhibited a decrease of about 4 fold for titanium and 7 fold for steel with respect to the substrates. As a result of potentiostatic cyclic tests in Ringer’s solution the corrosion current density of coated steel (2.47 × 10–10 A cm–2) was found to be much lower than for the steel substrate (1.87 × 10–7 A cm–2), treated and untreated Ti (6.60 × 10–6, 4.17 × 10–7 A cm–2), indicated the increase in corrosion resistance of steel and decrease of it for titanium after coating.
References
[1] C. Tsotsos, A.L. Yerokhin, A.D. Wilson, A. Leyland, A. Matthews: Wear 253 (2002) 986. DOI:10.1016/S0043-1648(02)00225-910.1016/S0043-1648(02)00225-9Search in Google Scholar
[2] M. Akita, K.Tokaji: Surf. Coat. Technol. 200 (2006) 6073. DOI:10.1016/j.surfcoat.2005.09.01810.1016/j.surfcoat.2005.09.018Search in Google Scholar
[3] M. Sivakumar, U. Kamachimudali, S. Rajeswari: J. Mater. Sci. Lett. 14 (1995) 148. DOI:10.1007/BF0045657310.1007/BF00456573Search in Google Scholar
[4] M. Cieslik, W. Reczynski, A.M. Janus, K. Engvall, R.P. Socha, A. Kotarba: Corros. Sci. 51 (2009) 1157. 10.1016/j.corsci.2009.02.012Search in Google Scholar
[5] C.H. Huang, J.C. Huang, J.B. Li, J.S.C. Jang: Mater. Sci. Eng. C 33 (2013) 4183. DOI:10.1016/j.msec.2013.01.06810.1016/j.msec.2013.01.068Search in Google Scholar
[6] J. Klompmaker, H.W.B. Jansen, R.P.H. Veth, H.K.L. Nielsen, J.H. de Groot, A.J. Pennings: Biomaterials 13 (1992) 625. DOI:10.1016/0142-9612(92)90031-I10.1016/0142-9612(92)90031-ISearch in Google Scholar
[7] H.Y. Cheung, K.T. Lau, T.P. Lu, D. Hui: Composites Part B 38 (2007) 291. DOI:10.1016/j.compositesb.2006.06.01410.1016/j.compositesb.2006.06.014Search in Google Scholar
[8] B.D. Ratner: J. Biomed. Mater. 27 (1993) 837. DOI:10.1002/jbm.82027030210.1002/jbm.820270302Search in Google Scholar
[9] M.S. Block, I.M. Finger, M.G. Fontenot, J.N. Kent: Int. J. Oral Max. Imp. 4 (1989) 219.Search in Google Scholar
[10] A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M.D. McKee: J. Biomed. Mater. Res. 40 (1998) 324. DOI:10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-LSearch in Google Scholar
[11] J.E. Lemons: Clin. Orthop. Relat. Res. 235 (1988) 220.10.1097/00003086-198810000-00021Search in Google Scholar
[12] L.L. Hench: J. Am. Ceram. Soc. 74 (1991) 1487. DOI:10.1111/j.1151-2916.1991.tb07132.x10.1111/j.1151-2916.1991.tb07132.xSearch in Google Scholar
[13] E.J. McPherson, L.D. Dorr, T.A. Gruen, M.T. Saberi: Clin. Orthop. Relat. Res. 315 (1995) 223.Search in Google Scholar
[14] Y.M. Kong, D.H. Kim, H.E. Kim, S.J. Heo, J.Y. Koak: J. Biomed. Mater. Res. (Appl. Biomater.) 63 (2002) 714. DOI:10.1002/jbm.1039210.1002/jbm.10392Search in Google Scholar
[15] W.R. Lacefield: Adv. Dent. Res. 13 (1999) 21. DOI:10.1177/0895937499013001100110.1177/08959374990130011001Search in Google Scholar
[16] H. Guoa, K.A. Khorb, Y.C. Boeya, X. Miao: Biomaterials 24 (2003) 667. DOI:10.1016/S0142-9612(02)00381-210.1016/S0142-9612(02)00381-2Search in Google Scholar
[17] X. Miao, A.J. Ruys, B.K. Milthorpe: J. Mater. Sci. 36 (2001) 3323. DOI:10.1023/A:101791522601510.1023/A:1017915226015Search in Google Scholar
[18] W. Bonfield: Ann. NY Acad. Sci. 523 (1988) 173. DOI:10.1111/j.1749-6632.1988.tb38510.x10.1111/j.1749-6632.1988.tb38510.xSearch in Google Scholar
[19] I. Espitia-Cabrera, H. Orozco-Hernández, R. Torres-Sánchez, M.E. Contreras-García, P. Bartolo-Pérez, L. Martínez: Mater. Lett. 58 (2003) 191. DOI:10.1016/S0167-577X(03)00443-910.1016/S0167-577X(03)00443-9Search in Google Scholar
[20] R. Rogojan, E. Andronescu, M.C. Munteanu, M. Radu, F. Gisela, R. Trusca: Asian J. Exp. Biol. Sci. 3 (2012) 303.Search in Google Scholar
[21] Y. Chen, Z. Dong, X. Miao: J. Biomim. Biomater. Tissue Eng. 1 (2008) 57. 10.4028/www.scientific.net/JBBTE.1.57Search in Google Scholar
[22] O.S. Yildirim, B. Aksakalb, H. Celik, Y. Vangolu, A. Okur: Med. Eng. Phys. 27 (2005) 221. DOI:10.1016/j.medengphy.2004.10.00610.1016/j.medengphy.2004.10.006Search in Google Scholar PubMed
[23] M. Rocca, M. Fini, G. Giaveresi, N.N. Aldini, R. Giardıno: Int. J. Artif. Organs. 24 (2001) 649.10.1177/039139880102400909Search in Google Scholar
[24] H.C. Hsu, S.C. Wu, C.H. Yang, W.F. Ho: J. Mater. Sci. Mater. Med. 20 (2009) 615. DOI:10.1007/s10856-008-3603-210.1007/s10856-008-3603-2Search in Google Scholar
[25] Z. Yao, Y. Jiang, Z. Jiang, F. Wang, Z. Wu: J. Mater. Process Technol. 205 (2008) 303. DOI:10.1016/j.jmatprotec.2007.11.11210.1016/j.jmatprotec.2007.11.112Search in Google Scholar
[26] H.J. Robinson, A.E. Markaki, C.A. Collier, T.W. Clyne: J. Mech. Behav. Biomed. Mater. 4 (2011) 2103. DOI:10.1016/j.jmbbm.2011.07.00910.1016/j.jmbbm.2011.07.009Search in Google Scholar
[27] A.L. Yerokhin, A. Leyland, C. Tsotsos, A.D. Wilson, X. Nie, A. Matthews: Surf. Coat. Technol. 142–144 (2001) 1129. DOI:10.1016/S0257-8972(01)01097-010.1016/S0257-8972(01)01097-0Search in Google Scholar
[28] X. Nie, C. Tsotsos, A. Wilson, A.L. Yerokhin, A. Leyland, A. Matthews: Surf. Coat. Technol. 139 (2001) 135. DOI:10.1016/S0257-8972(01)01025-810.1016/S0257-8972(01)01025-8Search in Google Scholar
[29] E.I. Meletis, X. Nie, F. Wang, J.C. Jiang: Surf. Coat. Technol. 150 (2002) 246. DOI:10.1016/S0257-8972(01)01521-310.1016/S0257-8972(01)01521-3Search in Google Scholar
[30] P. Gupta, G. Tenhundfeld, E.O. Daigle, D. Ryabkov: Surf. Coat. Technol. 201 (2007) 87. DOI:10.1016/j.surfcoat.2006.11.02310.1016/j.surfcoat.2006.11.023Search in Google Scholar
[31] M.E. Bahrololoom, M. Javidi, S. Javadpoor, J. Ma: J. Ceram. Process Res. 10 (2009) 129.Search in Google Scholar
[32] F. Mahzoon, M.E. Bahrololoom, S. Javadpour: Surf. Eng. 25 (2009) 628. DOI:10.1179/174329409X39777810.1179/174329409X397778Search in Google Scholar
[33] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey: Surf. Coat. Technol. 122 (1999) 73. DOI:10.1016/S0257-8972(99)00441-710.1016/S0257-8972(99)00441-7Search in Google Scholar
[34] R. Büscher, A. Fischer: Wear 254 (2003)1318. DOI:10.1016/S0043-1648(03)00081-410.1016/S0043-1648(03)00081-4Search in Google Scholar
[35] H.H. Park, I.S. Park, K.S. Kim, W.Y. Jeon, B.K. Park, H.S. Kim, T.S. Bae, M.H. Lee: Electrochim. Acta 55 (2010) 6109. DOI:10.1016/j.electacta.2009.10.07410.1016/j.electacta.2009.10.074Search in Google Scholar
[36] C.L. Liu, Y.J. Wang, M. Wang, W.J. Huang, P.K. Chu: Corros. Eng. Sci. Technol. 47 (2012) 167. DOI:10.1179/1743278211Y.000000002910.1179/1743278211Y.0000000029Search in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Study on the σ-phase precipitation of SAF2906 duplex stainless steel
- Recovery, recrystallization and diffusion in cold-rolled Ni
- Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
- Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
- Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
- Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
- Non-uniform sintering of yttria-stabilized zirconia powder compact
- Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
- Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
- Local structure of explosively welded titanium–stainless steel bimetal
- Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
- Short Communications
- Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
- Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
- The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
- Book Review / Buchbesprechungen
- Nanowerkstoffe für Einsteiger
- Personal
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Study on the σ-phase precipitation of SAF2906 duplex stainless steel
- Recovery, recrystallization and diffusion in cold-rolled Ni
- Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
- Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
- Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
- Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
- Non-uniform sintering of yttria-stabilized zirconia powder compact
- Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
- Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
- Local structure of explosively welded titanium–stainless steel bimetal
- Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
- Short Communications
- Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
- Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
- The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
- Book Review / Buchbesprechungen
- Nanowerkstoffe für Einsteiger
- Personal
- Conferences