Startseite Technik Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel

  • Xingang Tao , Lizhan Han und Jianfeng Gu EMAIL logo
Veröffentlicht/Copyright: 27. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The splitting phenomenon was detected in martensitic transformation of X12CrMoWVNbN10-1-1 steel using high resolution dilatometry under certain conditions. In-situ observation of austenite grain growth was carried out. Direct experimental results indicated that this splitting is not connected with the concentration gradient in the austenite resulting from the dissolution of carbonitrides during heating, but instead may be caused by the occurrence of abnormal grain growth.


Prof. Jianfeng Gu School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240, China Tel: +86 21-34203743 Fax:+86 21-34203743

References

[1] C. Liu, Y. Liu, D. Zhang, Z. Yan: Phase Transitions 85 (2012) 461. DOI:10.1080/01411594.2011.62290310.1080/01411594.2011.622903Suche in Google Scholar

[2] A. Kulmburg, F. Korntheuer: HTM, Haerterei Tech. Mitt. 31 (1976) 195.Suche in Google Scholar

[3] C. García de Andrés, F. Caballero, C. Capdevila, L. Alvarez: Mater. Charact. 48 (2002) 101. DOI:10.1016/S1044-5803(02)00259-010.1016/S1044-5803(02)00259-0Suche in Google Scholar

[4] C.G. De Andrés, J.A. Jiménez, L. Alvarez: Metall. Mater. Trans. A 27 (1996) 1799. DOI:10.1007/BF0265192910.1007/BF02651929Suche in Google Scholar

[5] F. Caballero, L. Alvarez, C. Capdevila, C. García de Andrés: Scr. Mater. 49 (2003) 315. DOI:10.1016/S1359-6462(03)00281-110.1016/S1359-6462(03)00281-1Suche in Google Scholar

[6] P. Vaugeois: PhD Thesis, Universitie Paris Sud, Orsay (1984) 20.Suche in Google Scholar

[7] X.G. Tao, J.F. Gu, L.Z. Han: ISIJ Int. 54 (2014) 1705. DOI:10.2355/isijinternational.54.170510.2355/isijinternational.54.1705Suche in Google Scholar

[8] P. Feltham: Acta Metall. 5 (1957) 97. DOI:10.1016/0001-6160(57)90123-210.1016/0001-6160(57)90123-2Suche in Google Scholar

[9] K. Irvine, F. Pickering, T. Gladman: ISIJ Int. 205 (1967) 161.Suche in Google Scholar

[10] J. Lake: Metall. Trans. A 17 (1986) 1907. DOI:10.1007/BF0264498810.1007/BF02644988Suche in Google Scholar

[11] B. Garbarz, F. Pickering: Mater. Sci. Technol. 4 (1988) 967. DOI:10.1179/mst.1988.4.11.96710.1179/mst.1988.4.11.967Suche in Google Scholar

[12] A. Ray, S.K. Ray, S. Mediratta: J. Mater. Sci. 25 (1990) 5070. DOI:10.1007/BF0058013110.1007/BF00580131Suche in Google Scholar

[13] X. Tao, J. Gu, L. Han: J. Nucl. Mater. 452 (2014) 557. DOI:10.1016/j.jnucmat.2014.06.01810.1016/j.jnucmat.2014.06.018Suche in Google Scholar

[14] A.Y. Kipelova, A. Belyakov, V. Skorobogatykh, I. Shchenkova, R. Kaibyshev: Met. Sci. Heat Treat. 52 (2010) 100. DOI:10.1007/s11041-010-9240-710.1007/s11041-010-9240-7Suche in Google Scholar

[15] H.D. Kim, I.S. Kim: ISIJ Int. 34 (1994) 198. DOI:10.2355/isijinternational.34.19810.2355/isijinternational.34.198Suche in Google Scholar

[16] W.B. Jones, C. Hills, D. Polonis: Metall. Trans. A 22 (1991) 1049. DOI:10.1007/BF0266109810.1007/BF02661098Suche in Google Scholar

[17] J. Janovec, M. Svoboda, J. Blach: Mater. Sci. Eng. A 249 (1998) 184. DOI:10.1016/S0921-5093(98)00526-710.1016/S0921-5093(98)00526-7Suche in Google Scholar

[18] M. Umemoto, W. Owen: Metall. Trans. 5 (1974) 2041. DOI:10.1007/BF0264449710.1007/BF02644497Suche in Google Scholar

[19] O. Ankara, A. Sastri, D. West: ISIJ Int. 204 (1966) 509.Suche in Google Scholar

[20] P. Brofman, G. Ansell: Metall. Mater. Trans. A 14 (1983) 1929. DOI:10.1007/BF0264556510.1007/BF02645565Suche in Google Scholar

[21] T. Maki, S. Shimooka, I. Tamura: Mater. Trans. B 2 (1971) 2944.10.1007/BF02813278Suche in Google Scholar

[22] S.J. Lee, Y.K. Lee: Mater. Sci. Forum 475 (2005) 3169. 10.4028/www.scientific.net/MSF.475-479.3169Suche in Google Scholar

[23] A. Garcia-Junceda, C. Capdevila, F. Caballero, C.G. de Andrés: Scr. Mater. 58 (2008) 134. DOI:10.1016/j.scriptamat.2007.09.01710.1016/j.scriptamat.2007.09.017Suche in Google Scholar

[24] C. Capdevila, F. Caballero, C. Garcia de Andres: Mater. Sci. Technol. 19 (2003) 581. DOI:10.1179/02670830322500190210.1179/026708303225001902Suche in Google Scholar

[25] S.-J. Lee, K.S. Park: Metall. Mater. Trans. A 44 (2013) 3423. DOI:10.1007/s11661-013-1798-410.1007/s11661-013-1798-4Suche in Google Scholar

[26] E. Jimenez-Melero, N. Van Dijk, L. Zhao, J. Sietsma, S. Offer-man, J. Wright, S. Van der Zwaag: Scr. Mater. 56 (2007) 421. DOI:10.1016/j.scriptamat.2006.10.04110.1016/j.scriptamat.2006.10.041Suche in Google Scholar

[27] J. Guimarães, P. Rios: J. Mater. Sci. 45 (2010) 1074. DOI:10.1007/s10853-009-4044-010.1007/s10853-009-4044-0Suche in Google Scholar

[28] H.-S. Yang, H. Bhadeshia: Scr. Mater. 60 (2009) 493. DOI:10.1016/j.scriptamat.2008.11.04310.1016/j.scriptamat.2008.11.043Suche in Google Scholar

Received: 2014-12-02
Accepted: 2015-01-22
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Artikel in diesem Heft

  1. Frontmatter
  2. Original Contributions
  3. Study on the σ-phase precipitation of SAF2906 duplex stainless steel
  4. Recovery, recrystallization and diffusion in cold-rolled Ni
  5. Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
  6. Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
  7. Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
  8. Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
  9. Non-uniform sintering of yttria-stabilized zirconia powder compact
  10. Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
  11. Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
  12. Local structure of explosively welded titanium–stainless steel bimetal
  13. Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
  14. Short Communications
  15. Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
  16. Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
  17. The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
  18. Book Review / Buchbesprechungen
  19. Nanowerkstoffe für Einsteiger
  20. Personal
  21. Conferences
Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111221/pdf
Button zum nach oben scrollen