Startseite Technik Electrical conductivity of bismuth doped dysprosia stabilized zirconia as an electrolyte material for SOFC
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrical conductivity of bismuth doped dysprosia stabilized zirconia as an electrolyte material for SOFC

Paper presented at “International Conference on Science and Engineering of Materials” (ICSEM), 6–8 January 2014, Sharda University, Greater Noida, India.
  • Prabhakar Singh Raghvendra
Veröffentlicht/Copyright: 12. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We report our investigations on structural, thermal and electrical behavior of 10 mol.% dysprosia stabilized zirconia (DySZr) and 2 mol.% Bi2O3-doped dysprosia stabilized zirconia (2BiDySZr) prepared via a solid state ceramic route. Addition of 2 mol.% of Bi2O3 decreased the sintering temperature of DySZr, promoted the growth of zirconia grains and also improved the density. This also supports stabilizing the cubic phase at room temperature. The electrical conductivity was found to increase on account of bismuth doping in DySZr. The activation energies for conduction in DySZr and 2BiDySZr systems were found to be 1.11 and 1.15 eV, respectively in the measured temperature range, indicating the oxygen ion conductivity in the system. The thermal expansion coefficient of the Bi2O3-doped DySZr system was found to match with the other component materials for solid oxide fuel cells.


* Correspondence address, Dr. Prabhakar Singh, Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005, India, Tel.: +91-542-6701916, Fax: +91-542-2368428, E-mail:

References

[1] S.P.S.Badwal: Solid State Ionics52 (1992) 23. 10.1016/0167-2738(92)90088-7Suche in Google Scholar

[2] D.P.F.De Souza, A.L.Chinelatto, M.F.De Souza: J. Mater. Sci.30 (1995) 4355. 10.1007/BF00361517Suche in Google Scholar

[3] Y.Arachi, H.Sakai, O.Yamamoto, Y.Takeda, N.Imanishai: Solid State Ionics121 (1999) 133. 10.1016/S0167-2738(98)00540-2Suche in Google Scholar

[4] M.Hirano, T.Oda, K.Ukai, Y.Mizutani: Solid State Ionics158 (2003) 215. 10.1016/S0167-2738(02)00912-8Suche in Google Scholar

[5] Raghvendra, R.K. Singh, P.Singh: J. Alloys Compd.549 (2013) 238. 10.1016/j.jallcom.2012.09.059Suche in Google Scholar

[6] M.Pastor, S.Maiti, A.Pandey, K.Biswas, I.Manna: Mater. Chem. Phys.125 (2011) 202. 10.1016/j.matchemphys.2010.09.007Suche in Google Scholar

[7] R.Punn, A.M.Feteira, D.C.Sinclair, C.Greaves: J. Am. Chem. Soc.128 (2006) 15386. 10.1021/ja065961dSuche in Google Scholar PubMed

[8] K.Sood, K.Singh, O.P.Pandey: Ionics16 (2010) 549. 10.1007/s11581-010-0429-ySuche in Google Scholar

[9] V.Gil, C.Moure, P.Durán, J.Tartaj: Solid State Ionics178 (2007) 359. 10.1016/j.ssi.2006.10.024Suche in Google Scholar

[10] Raghvendra, P. Singh: J. Eur. Ceram. Soc.35 (2015) 1485. 10.1016/j.jeurceramsoc.2014.12.002Suche in Google Scholar

[11] I.C.Cosentino, R.Muccilo: J. Mater. Sci. Lett.12 (1993) 1022. 10.1007/BF00420205Suche in Google Scholar

[12] P.M.Abdala, M.C.A.Fantini, A.F.Craievich, D.G.Lamas: Phys. Chem. Chem. Phys.12 (2010) 2822. 10.1039/b922541bSuche in Google Scholar PubMed

[13] B.D.Cullity, S.R.Stock: Elements of X-Ray Diffraction, 3rd Ed., Prentice-Hall Inc. (2001) p. 167.Suche in Google Scholar

[14] A.K.Jonscher: Nature276 (1977) 673. 10.1038/267673a0Suche in Google Scholar

[15] P.Singh, Raghvendra, O.Parkash, D.Kumar: Phys. Rev. B84 (2011) 174306. 10.1103/PhysRevB.84.052401Suche in Google Scholar

[16] D.J.Kim: J. Am. Ceram. Soc.72 (1989) 1415. 10.1111/j.1151-2916.1989.tb07647.xSuche in Google Scholar

[17] F.Tietz: Ionics5 (1999) 129. 10.1007/BF02375916Suche in Google Scholar

Received: 2014-03-31
Accepted: 2015-01-12
Published Online: 2015-05-12
Published in Print: 2015-05-13

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111204/pdf
Button zum nach oben scrollen