Experimental study of the phase relationships in the Al-rich corner of the Al–Si–Fe–Cr quaternary system at 700 °C
-
Zhe Zhou
, Zhi Li , Yi Xie , Xinming Wang , Yongxiong Liu , Zhaohui Long und Fucheng Yin
Abstract
The phase equilibria of the 700 °C isothermal section of the Al–Si–Fe–Cr quaternary system with Al fixed at 90 at.%, and the related Al-rich ternary systems, have been determined experimentally with scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and X-ray diffractometry. Eight four-phase regions and a new quaternary compound named ζ are found in the 700 °C isothermal section of Al–Si–Fe–Cr quaternary system. The ζ phase is found to be in equilibrium with all phases in the section including the FeAl3, τ5, τ6, (Si), τ1, Al4Cr, Al45Cr7 and H phases, as well as the liquid phase.
References
[1] G.H.Awan, F.Z.Hasan: Mater. Sci. Eng. A472 (2008) 157. 10.1016/j.msea.2007.03.013Suche in Google Scholar
[2] W.J.Cheng, C.J.Wang: Intermetallics19 (2011) 1455. 10.1016/j.intermet.2011.05.013Suche in Google Scholar
[3] W.J.Cheng, C.J.Wang: Surf. Coat. Technol.205 (2011) 4726. 10.1016/j.surfcoat.2011.04.061Suche in Google Scholar
[4] D.Q.Wang, Z.Y.Shi: Appl. Surf. Sci.227 (2004) 255. 10.1016/j.apsusc.2003.11.076Suche in Google Scholar
[5] B.B.Cao, K.H.Kuo: J. Alloys Compd.458 (2008) 238. 10.1016/j.jallcom.2007.04.022Suche in Google Scholar
[6] Z.B.He, B.S.Zou, K.H.Kuo: J. Alloys Compd.417 (2006) L4. 10.1016/j.jallcom.2005.09.034Suche in Google Scholar
[7] T.Dasgupta, J.Etourneau, B.Chevalier, S.F.Matar, A.M.Umarji: J. Appl. Phys.103 (2008) 113516–1. 10.1063/1.2917347Suche in Google Scholar
[8] E.Gopal, S.Baranidharan, J.Sekhar: Mater. Sci. Eng.99 (1988) 413. 10.1016/0025-5416(88)90367-9Suche in Google Scholar
[9] K.Robinson: Acta Crystallogr.6 (1953) 854. 10.1107/S0365110X53002490Suche in Google Scholar
[10] M.V.Kral, P.N.H.Nakashima, D.R.G.Mitchell: Metall. Mater. Trans. A37 (2006) 1987. 10.1007/s11661-006-0141-8Suche in Google Scholar
[11] R.N.Corby, P.J.Black: Acta Crystallogr. B33 (1977) 3468. 10.1107/S0567740877011224Suche in Google Scholar
[12] C.Romming, V.Hansen, J.Gjonnes: Acta Crystallogr. B50 (1994) 307. 10.1107/S0108768193013096Suche in Google Scholar
[13] D.Pavlyuchkov, B.Przepiórzyński, B.Grushko, T.Y.Velikanova: Metal Phys. Adv. Technol.30 (2008) 1423.Suche in Google Scholar
[14] D.Pavlyuchkov, B.Przepiórzyński, B.Grushko, T.Y.Velikanova: Powder Metal. Metal. Ceram.47 (2008) 698. 10.1007/s11106-009-9081-3Suche in Google Scholar
[15] H.P.Takeda, K.Mutuzaki: Tetsu to Hagane26 (1940) 335.10.2355/tetsutohagane1915.26.5_335Suche in Google Scholar
[16] S.P.Gupta: Mater. Charact.49 (2002) 269. 10.1016/S1044-5803(03)00006-8Suche in Google Scholar
[17] T.Maitra, S.P.Gupta: Mater. Charact.49 (2002) 293.10.1016/S1044-5803(03)00005-6Suche in Google Scholar
[18] S.Pontevichi, F.Bosselet, F.Barbeau, M.Peronnet, J.C.Viala: J. Phase Equilib. Diffus.25 (2004) 528. 10.1007/s11669-004-0066-0Suche in Google Scholar
[19] H.W.L.Phillips: Inst. of Metals Monogr.25 (1959) 57.Suche in Google Scholar
[20] L.Eleno, J.Vezely, B.Sundman, M.Cieslar, J.Lacaze: Mater. Sci. Forum649 (2010) 523. 10.4028/www.scientific.net/MSF.649.523Suche in Google Scholar
[21] V.Stefániay, Á.Griger, T.Turmezey: J. Mater. Sci.22 (1987) 539. 10.1007/BF00723516Suche in Google Scholar
[22] Z.Li, X.M.Li, F.C.Yin, Y.Wu, M.X.Zhao: J. Phase Equilib. Diffus.35 (2014) 248. 10.1007/s11669-014-0298-6Suche in Google Scholar
[23] W.Chubb, S.Alfant, A.A.Bauer, E.J.Jablonowski, F.R.Shober, R.F.Dickerson: Battelle Memorial Inst. Rep., No. BMI-1298 (1958) 103.Suche in Google Scholar
[24] J.N.Pratt, G.V.Raynor: J. Inst. Met.80 (1951) 449.Suche in Google Scholar
[25] G.V.Raynor, V.G.Rivlin: Phase Equilibria in Iron Ternary Alloys (Phase Diagrams of Ternary Iron Alloys, Part 4), Institute of Metals, London (1988) 81.Suche in Google Scholar
[26] G.Ghosh, in: G.Petzow, G.Effenberg (Eds.), Ternary Alloys, Vol. 4, VCH, Weinheim (1991) 324.Suche in Google Scholar
[27] M.Palm: J. Alloys Compd.252 (1997)192. 10.1016/S0925-8388(96)02719-3Suche in Google Scholar
[28] D.Pavlyuchkov, B.Przepiórzyński, W.Kowalski, T.Y.Velikanova, B.Grushko: CALPHAD45 (2014) 194. 10.1016/j.calphad.2013.12.007Suche in Google Scholar
[29] S.P.Gupta: Mater. Charact.52 (2004) 355. 10.1016/j.matchar.2004.06.010Suche in Google Scholar
[30] H.L.Chen, F.Weitzer, J.C.Schuster, Y.Du, H.H.Xu: J. Alloys Compd.436 (2007) 313. 10.1016/j.jallcom.2006.07.038Suche in Google Scholar
[31] H.L.Chen: Phase diagram measurement and thermodynamic modeling of the Al–Cr–Si, Al–Cr–Ti, Al–Cu–Fe, Al–Cu_Ni and Nb-Ni Systems, Ph.D. Thesis, Central South University, China (2008).Suche in Google Scholar
[32] Z.Zhou, Z.Li, X.M.Wang, Y.X.Liu, Y.Wu, M.X.Zhao, F.C.Yin: Thermochim. Acta.577 (2014) 59. 10.1016/j.tca.2013.12.009Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermodynamic description of the Ti–O system
- Influence of MgO on the phase equilibria in the CuOx–FeOy–MgO–SiO2 system in equilibrium with copper alloy – Part I: methodology and liquidus in the tridymite primary phase field
- Experimental phase diagram of the V–Si–Ho ternary system
- Experimental study of the phase relationships in the Al-rich corner of the Al–Si–Fe–Cr quaternary system at 700 °C
- Effect of quench–ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy
- Grain growth and thermal stability in nanocrystalline Fe–B alloys prepared by melt spinning
- Microatmosphere sintering of Fe-3.2Mn-1.5Si-0.5C steel in flowing technical nitrogen
- Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying
- Effect of Mo/B atomic ratio on the properties of Mo2NiB2-based cermets
- Improving the stoichiometry of RF-sputtered amorphous alumina thin films by thermal annealing
- Assessment on the contact factors of a sandwich soft finger model – An experimental investigation
- Reducing debinding time in thick components fabricated by powder injection molding
- Short Communications
- Rapid synthesis of Ag nanoparticles and Ag@SiO2 core–shells
- Electrical conductivity of bismuth doped dysprosia stabilized zirconia as an electrolyte material for SOFC
- People
- Prof. Dr.-Ing. Lorenz Singheiser on the occasion of his 65th birthday
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermodynamic description of the Ti–O system
- Influence of MgO on the phase equilibria in the CuOx–FeOy–MgO–SiO2 system in equilibrium with copper alloy – Part I: methodology and liquidus in the tridymite primary phase field
- Experimental phase diagram of the V–Si–Ho ternary system
- Experimental study of the phase relationships in the Al-rich corner of the Al–Si–Fe–Cr quaternary system at 700 °C
- Effect of quench–ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy
- Grain growth and thermal stability in nanocrystalline Fe–B alloys prepared by melt spinning
- Microatmosphere sintering of Fe-3.2Mn-1.5Si-0.5C steel in flowing technical nitrogen
- Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying
- Effect of Mo/B atomic ratio on the properties of Mo2NiB2-based cermets
- Improving the stoichiometry of RF-sputtered amorphous alumina thin films by thermal annealing
- Assessment on the contact factors of a sandwich soft finger model – An experimental investigation
- Reducing debinding time in thick components fabricated by powder injection molding
- Short Communications
- Rapid synthesis of Ag nanoparticles and Ag@SiO2 core–shells
- Electrical conductivity of bismuth doped dysprosia stabilized zirconia as an electrolyte material for SOFC
- People
- Prof. Dr.-Ing. Lorenz Singheiser on the occasion of his 65th birthday
- DGM News
- DGM News