Electrophysical and structure-sensitive properties of liquid Ga–In alloys
-
Yuriy Plevachuk
, Vasyl Sklyarchuk , Natalia Shevchenko and Sven Eckert
Abstract
The broad interest in the thermophysical properties of gallium-based melts is stimulated by their extensive use in various applications, such as sliding contacts, heat-sensitive elements of liquid-metal thermometers and thermocouples, carrier liquid for conducting magnetic fluids and the working medium for physical modeling in solidification and magnetohydrodynamic studies. The electrical conductivity, thermal conductivity, viscosity, density and thermoelectric power were determined for different alloy compositions in a wide temperature range below and above the liquidus. Respective scaling relations are proposed. A comparison with data available in literature is given.
References
[1] V.Y.Prokhorenko, V.V.Roshchupkin, M.A.Pokrasin, S.V.Prokhorenko, V.V.Kotov: High Temp.38 (2000) 954. 10.1023/A:1004157827093Search in Google Scholar
[2] L.A.Akashev, V.I.Kononenko: Tech. Phys.43 (1998) 853. 10.1134/1.1259083Search in Google Scholar
[3] I.Silverman, A.Arenshtam, D.Kijel, A.Nagler: Nucl. Instrum. Meth. B241 (2005) 1009. 10.1016/j.nimb.2005.07.161Search in Google Scholar
[4] M.D.Dickey, R.C.Chiechi, R.J.Larsen, E.A.Weiss, D.A.Weitz, G.M.Whitesides: Adv. Funct. Mater.18 (2008) 1097. 10.1002/adfm.200701216Search in Google Scholar
[5] R.C.Chiechi, E.A.Weiss, M.D.Dickey, G.M.Whitesides: Angew. Chem. Int. Edit.47 (2008) 142. 10.1002/anie.200703642Search in Google Scholar
[6] W.Ludwig, J.Y.Buffire, S.Savelli, P.Cloetens: Acta Mater.51 (2003) 585. 10.1016/S1359-6454(02)00320-8Search in Google Scholar
[7] H.Yin, J.N.Koster: J. Crystal Growth205 (1999) 590. 10.1016/S0022-0248(99)00262-6Search in Google Scholar
[8] S.Boden, S.Eckert, B.Willers, G.Gerbeth: Metall. Mater. Trans. A39 (2008) 613. 10.1007/s11661-007-9462-5Search in Google Scholar
[9] N.Shevchenko, S.Boden, G.Gerbeth, S.Eckert: Metall. Mater. Trans. A44 (2013) 3797. 10.1007/s11661-013-1711-1Search in Google Scholar
[10] Yu.Plevachuk, V.Sklyarchuk: Meas. Sci. Technol.12 (2001) 23. 10.1088/0957-0233/12/1/303Search in Google Scholar
[11] V.Sklyarchuk, Yu.Plevachuk: Meas. Sci. Technol.16 (2005) 467. 10.1088/0957-0233/16/2/019Search in Google Scholar
[12] S.Mudry, V.Sklyarchuk, A.Yakymovych: J. Phys. Studies.12 (2008) 1601.10.30970/jps.12.1601Search in Google Scholar
[13] R.Roscoe: Proc. Phys. Soc.72 (1958) 576. 10.1088/0370-1328/72/4/312Search in Google Scholar
[14] Yu.V.Najdich: Contact phenomena in metallurgical melts, Naukova Dumka, Kyiv (1972).Search in Google Scholar
[15] J.Lee, A.Kiyose, S.Nakatsuka, M.Nakamoto, T.Tanaka: ISIJ Int.44 (2004) 1793. 10.2355/isijinternational.44.1283Search in Google Scholar
[16] Yu.Plevachuk, V.Sklyarchuk, G.Gerbeth, S.Eckert, R.Novakovic: Surf. Sci.605 (2011) 1034. 10.1016/j.susc.2011.02.026Search in Google Scholar
[17] http://imagej.net.Search in Google Scholar
[18] B.P.Pashaev: Thermophysical properties of metals and alloys in the solid and liquid states, Rostov University Publishing House (1980).10.1007/BF00866461Search in Google Scholar
[19] Yu.Plevachuk, V.Sklyarchuk, A.Yakymovych, G.Gerbeth: J. Non-Cryst. Solids.354 (2008) 4443. 10.1016/j.jnoncrysol.2008.06.068Search in Google Scholar
[20] K.Bae, A.F.Sprecher, H.Conrad, D.Y.Jung, in: Int. Symp. Testing and Failure Analysis, ASM Int., Materials Park, OH (1988) p. 53.Search in Google Scholar
[21] Yu.Plevachuk, V.Sklyarchuk, A.Yakymovych, B.Willers, G.Gerbeth: J. Alloys Compd.394 (2005) 63. 10.1016/j.jallcom.2004.10.051Search in Google Scholar
[22] S.Mudry, I.Shtablavyi, I.Shevernoga: J. Mol. Liq.173 (2012) 85. 10.1016/j.molliq.2012.06.019Search in Google Scholar
[23] J.M.Ziman: The Physics of Metals, Chap. 5 and 6, University Press, Cambridge (1969).Search in Google Scholar
[24] Yu.Plevachuk, V.Sklyarchuk, O.Alekhin, L.Bulavin: J. Mol. Liq.127 (2006) 33. 10.1016/j.molliq.2006.03.007Search in Google Scholar
[25] Yu.Plevachuk, V.Sklyarchuk, O.Alekhin, O.Bilous, L.Bulavin: J. Non-Cryst. Solids.353 (2007) 3310. 10.1016/j.jnoncrysol.2007.05.077Search in Google Scholar
[26] Yu.Plevachuk, V.Sklyarchuk, O.Alekhin, L.Bulavin: J. Alloys Compd.452 (2008) 174. 10.1016/j.jallcom.2006.12.160Search in Google Scholar
[27] Yu.Plevachuk, V.Sklyarchuk, O.Alekhin, L.Bulavin, O.Bilous: J. Phys. Conf. Ser.98 (2008) U173.10.1088/1742-6596/98/2/022007Search in Google Scholar
[28] Yu.Plevachuk, V.Sklyarchuk, O.Alekhin, O.Bilous: J. Non-Cryst. Solids.391 (2014) 12. 10.1016/j.jnoncrysol.2014.03.004Search in Google Scholar
[29] V.P.Chentsov, V.G.Shevchenko, A.G.Mozgovoi, M.A.Pokrasin: Inorg. Mater.2 (2011) 468. 10.1134/S2075113311050108Search in Google Scholar
[30] T.Iida, R.I.L.Guthrie: The physical properties of liquid metals, Clarendon Press, Oxford (1993).Search in Google Scholar
[31] A.F.Crawley: Int. Metallurg. Rev.19 (1974) 32. 10.1179/095066074790137015Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials
- Excellent cold rollability in a single pass of an Mg-4Er (wt.%) alloy
- An experimental study of the precipitation kinetics of pre-rolled Ni-Span-C 902 superalloy
- Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
- Investigation of the wear resistance and microstructure of Al/SiC metal matrix composites as a function of reinforcement volume fraction and reinforcement to matrix particle size ratio applying artificial neural network
- Influence of zinc (II) ion concentration on Ni–Zn–P coatings deposited onto aluminum and their corrosion behavior
- Joining steel to aluminum alloy by resistance spot welding with a rivet
- Electrophysical and structure-sensitive properties of liquid Ga–In alloys
- Short Communications
- Synthesis and characterization of the novel nanocomposite Co(OH)2/graphene as supercapacitor materials
- Preparation of MnAlC flakes by surfactant-assisted ball-milling and the effects of annealing
- An improved two-stage sintering method for tungsten heavy alloys: conventional solid-phase sintering followed by microwave heating
- Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors
- Effects of La–Zn substituent and calcination temperature on the microstructure and magnetic properties of Sr-ferrites
- Predicting the corrosion tendency of α-brass in acidic and alkaline tap water
- People
- 10.3139/146.610026
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials
- Excellent cold rollability in a single pass of an Mg-4Er (wt.%) alloy
- An experimental study of the precipitation kinetics of pre-rolled Ni-Span-C 902 superalloy
- Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
- Investigation of the wear resistance and microstructure of Al/SiC metal matrix composites as a function of reinforcement volume fraction and reinforcement to matrix particle size ratio applying artificial neural network
- Influence of zinc (II) ion concentration on Ni–Zn–P coatings deposited onto aluminum and their corrosion behavior
- Joining steel to aluminum alloy by resistance spot welding with a rivet
- Electrophysical and structure-sensitive properties of liquid Ga–In alloys
- Short Communications
- Synthesis and characterization of the novel nanocomposite Co(OH)2/graphene as supercapacitor materials
- Preparation of MnAlC flakes by surfactant-assisted ball-milling and the effects of annealing
- An improved two-stage sintering method for tungsten heavy alloys: conventional solid-phase sintering followed by microwave heating
- Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors
- Effects of La–Zn substituent and calcination temperature on the microstructure and magnetic properties of Sr-ferrites
- Predicting the corrosion tendency of α-brass in acidic and alkaline tap water
- People
- 10.3139/146.610026
- DGM News
- DGM News