Home Artificial aging of thixocast ZA27 alloy and particulate ZA27/SiCp composites
Article
Licensed
Unlicensed Requires Authentication

Artificial aging of thixocast ZA27 alloy and particulate ZA27/SiCp composites

  • Ilija Bobić , Miroslav Babić , Aleksandar Vencl , Biljana Bobić and Slobodan Mitrović
Published/Copyright: October 18, 2013
Become an author with De Gruyter Brill

Abstract

Thixocast ZA27 alloy and particulate ZA27/SiCp composites were subjected to artificial aging at 80, 120 and 160°C (T5 regime). Composites with 5 and 10 vol.% SiC particles were produced via the compocasting method. The influence of the aging was investigated using different techniques. Differential scanning calorimetry was performed to reveal the presence of phases created in the thixocast ZA27 alloy and the composites. Microstructures and fracture behavior were examined by means of optical microscopy, scanning electron microscopy and X-ray diffraction. Aging processes in the matrix alloy and composites were followed using hardness measurements. A decrease in the hardness values was noticed with the increase in the aging temperature. At higher temperatures diffusion of zinc atoms from supersaturated phases in the matrix alloy was enhanced, which resulted in faster changes in the hardness. Aging processes in the composites were significantly accelerated compared to the matrix alloy, due to the presence of particulate reinforcements. The maximum in hardness was achieved for shorter time in the ZA27/SiCp composite with higher volume fraction of SiC particles.


* Correspondence address, Ilija Bobic, PhD, “Vinča” Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12 – 14, 11001, Belgrade, Serbia, Tel.: +381 11 34 08 518, Fax: +381 11 34 08 224, E-mail:

References

[1] E.Gervais, R.J.Barnhurst, C.A.Loong: J. Met.11 (1985) 43. 10.1007/BF03258743Search in Google Scholar

[2] R.Lyon: Met. Mater.1 (1985) 55.Search in Google Scholar

[3] E.J.KubelJr: Adv. Mater. Process.132 (1987) 51.10.2307/3971989Search in Google Scholar

[4] M.Babic, R.Ninkovic: Tribol. Ind.26 (2004) 3.Search in Google Scholar

[5] BS EN 12844: 1999 Zinc and zinc alloys. Castings. Specifications.Search in Google Scholar

[6] K.N.Melton, J.W.Edington: J. Mater. Sci.9 (1974) 543. 10.1007/BF00551872Search in Google Scholar

[7] T.R.Anantharaman, V.Ramaswamy, E.P.Butler: J. Mater. Sci.9 (1974) 240. 10.1007/BF00550947Search in Google Scholar

[8] S.Murphy: Z. Metallkd.71 (1980) 96.10.1515/ijmr-1980-710207Search in Google Scholar

[9] S.Murphy, T.Savaskan: Pract. Metallogr.24 (1987) 204.Search in Google Scholar

[10] T.Savaskan, S.Murphy: Mater. Sci. Technol.6 (1990) 695. 10.1179/026708390790193781Search in Google Scholar

[11] I.Bobic, B.Djuric, M.T.Jovanovic, S.Zec: Mater. Charact.29 (1992) 277. 10.1016/1044-5803(92)90099-4Search in Google Scholar

[12] H.M.Wang, Q.Chen, Y.Wu, Y.Zhang: J. Mater. Sci.27 (1992) 1212. 10.1007/BF00541601Search in Google Scholar

[13] M.Babic, A.Vencl, S.Mitrovic, I.Bobic: Tribol. Lett.2 (2009) 125. 10.1007/s11249-009-9467-xSearch in Google Scholar

[14] P.Choudhury, K.Das, S.Das: Mater. Sci. Eng.A 398 (2005) 332. 10.1016/j.msea.2005.03.098Search in Google Scholar

[15] H.Lehuy: J. Mater. Sci.23 (1988) 2943. 10.1007/BF00547473Search in Google Scholar

[16] M.C.Flemings: Metall. Trans.22A (1991) 957.10.1007/BF02661090Search in Google Scholar

[17] H.Lehuy, J.Masounave, J.Blain: J. Mater. Sci.20 (1985) 105. 10.1007/BF00555904Search in Google Scholar

[18] B.Bobic, M.Babic, S.Mitrovic, N.Ilic, I.Bobic, M.T.Jovanovic: Int. J. Mater. Res.101 (2010) 1524. 10.3139/146.110425Search in Google Scholar

[19] T.J.Chen, Y.Hao, J.Sun, Y.D.Li: Mater. Sci. Eng. A396 (2005) 213. 2005.01.013. 10.1016/j.msea.Search in Google Scholar

[20] T.J.Chen, Y.HaoY.D.Li: Mater. Des.28 (2007) 1279. 10.1016/j.matdes.2005.12.010Search in Google Scholar

[21] T.J.Chen, Y.Hao, J.Sun, Y.D.Li: Mater. Sci. Eng.A 382 (2004) 90. 10.1016/j.msea.2004.04.029Search in Google Scholar

[22] T.J.Chen, Y.Hao, J.Sun: J. Mater. Process. Technol.148 (2004) 8. 10.1016/j.jmatprotec.2003.11.037Search in Google Scholar

[23] H.Aashuri: Mater. Sci. Eng. A391 (2005) 77. 10.1016/j.msea.2004.08.057Search in Google Scholar

[24] I.A.Cornie, R.Guerriero, L.Meregalli, I.Tangerini: In: S.G.Fishman, A.K.Dingra (Eds.), Cast Reinforced Metal Composites, ASM International, Materials Park, OH (1988).Search in Google Scholar

[25] N.Karni, G.B.Barkay, M.J.Bamberger: J. Mater. Sci. Lett.13 (1994) 541. 10.1007/BF00540194Search in Google Scholar

[26] K.H.W.Seah, S.C.Sharma, P.R.Rao, B.M.Girish: Mater. Des.16 (1995) 277. 10.1016/0261-3069(96)00008-8Search in Google Scholar

[27] R.J.Arsenault, L.Wang, C.R.Feng: Acta. Metall. Mater.39 (1991) 47. 10.1016/0956-7151(91)90327-WSearch in Google Scholar

[28] I.Dutta, D.L.Bourell: Mater. Sci. Eng. A112 (1989) 67. 10.1016/0921-5093(89)90345-6Search in Google Scholar

[29] S.Suresh, K.K.Chawla, In: S.Suresh, A.Mortensen, A.Needleman (Eds.), Fundamentals of Metal-Matrix Composites, Butterworth-Heinemann, Oxford (1993).Search in Google Scholar

[30] S.C.Sharma, S.Sastry, M.Krishna: J. Alloy. Compd346 (2002) 292. 10.1016/S0925-8388(02)00528-5Search in Google Scholar

[31] Z.Q.Li, H.Z.Zhou, X.Y.Luo, T.Wang, K.Shen: Trans. Nonferr. Met. Soc. China.16 (2006) 98. 10.1016/S1003-6326(06)60017-4Search in Google Scholar

[32] Z.Acimovic-Pavlovic, K.T.Raic. I.Bobic, B.Bobic: Adv. Compos. Mater.20 (2011) 375. 10.1163/092430411X558512Search in Google Scholar

[33] ASTM E10-10 Standard Test Method for Brinell Hardness of Metallic Materials (2010).Search in Google Scholar

[34] H.Conrad: J. Met.7 (1964) 582.10.1007/BF03378292Search in Google Scholar

Received: 2012-12-19
Accepted: 2013-5-16
Published Online: 2013-10-18
Published in Print: 2013-10-10

© 2013, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110958/pdf
Scroll to top button