Home Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
Article
Licensed
Unlicensed Requires Authentication

Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings

  • Deqiang Sun , Weihong Zhang and Jiang Yu
Published/Copyright: May 15, 2013
Become an author with De Gruyter Brill

Abstract

A reliable finite element model was employed to investigate the effects of configuration parameters and impact velocity on the in-plane deformation mode and dynamic plateau stress of staggered triangular honeycomb cores at impact velocities 3–300 m s–1 under in-plane crushing loadings. At different impact velocities, ‘>’-, ‘<’-shaped, and ‘I’-shaped deformation modes appear in turn. The effects of configuration parameters on the deformation modes are discussed qualitatively. When all configuration parameters are kept constant, the mean in-plane dynamic plateau stress is proportional to the square of impact velocity; for a given impact velocity, the mean in-plane dynamic plateau stress is related to the ratio of cell-wall thickness to edge length by power laws and to the expanding angle by complicated curves. Mean in-plane dynamic plateau stresses are expressed by empirical equations in terms of configuration parameters and impact velocity based on our simulation results.


Correspondence address Deqiang Sun, Ph. D., Shaanxi University of Science and Technology, Xi'an, P.O. Box 806, Shaaxi 710048P.R. China, Tel.: +86 29 82 312 803, Fax: +86 29 83 220 978, E-mail:

References

[1] J.Hohe, W.Becker: Compos. Struct.45 (1999) 131. 10.1016/S0263-8223(99)00016-110.1016/S0263-8223(99)00016-1Search in Google Scholar

[2] J.Hohe, C.Beschorner, W.Becker: Compos. Struct.46 (1999) 73. 10.1016/S0263-8223(99)00048-310.1016/S0263-8223(99)00048-3Search in Google Scholar

[3] J.L.Grenestedt: Int. J. Solids Struct.36 (1999) 1471. 10.1016/S0020-7683(98)00048-110.1016/S0020-7683(98)00048-1Search in Google Scholar

[4] L.J.Gibson, M.F.Ashby: Cellular solids: structures and properties, 2nd ed., Cambridge University Press, Cambridge (1997).10.1017/CBO9781139878326Search in Google Scholar

[5] A.J.Wang, D.L.McDowell: J. Eng. Mater. Technol.126 (2004) 137. 10.1115/1.164616510.1115/1.1646165Search in Google Scholar

[6] H.X.Zhu, N.J.Mills: Int. J. Solids Struct.37 (2000) 1931. 10.1016/S0020-7683(98)00324-210.1016/S0020-7683(98)00324-2Search in Google Scholar

[7] S.D.Papka, S.Kyriakides: J. Mech. Phys. Solids42 (1994) 1499. 10.1016/0022-5096(94)90085-X10.1016/0022-5096(94)90085-XSearch in Google Scholar

[8] S.D.Papka, S.Kyriakides: Acta Mater.46 (1998) 2765. 10.1016/S1359-6454(97)00453-910.1016/S1359-6454(97)00453-9Search in Google Scholar

[9] S.D.Papka, S.Kyriakides: Int. J. Solids Struct.36 (1998) 4367. 10.1016/S0020-7683(98)00224-810.1016/S0020-7683(98)00224-8Search in Google Scholar

[10] S.D.Papka, S.Kyriakides: Int. J. Solids Struct.36 (1998) 4397. 10.1016/S0020-7683(98)00225-X10.1016/S0020-7683(98)00225-XSearch in Google Scholar

[11] A.Hönig, W.J.Stronge: Int. J. Mech. Sci.44 (2002) 1665. 10.1016/S0020-7403(02)00060-710.1016/S0020-7403(02)00060-7Search in Google Scholar

[12] A.Hönig, W.J.Stronge: Int. J. Mech. Sci.44 (2002): 1697. 10.1016/S0020-7403(02)00061-910.1016/S0020-7403(02)00061-9Search in Google Scholar

[13] D.Ruan, G.Lua, B.Wang, T.X.Yu: Int. J. Impact Eng.28 (2003) 161. 10.1016/S0734-743X(02)00056-810.1016/S0734-743X(02)00056-8Search in Google Scholar

[14] Z.Zheng, J.Yu, J.Li: Int. J. Impact Eng.32 (2005) 650. 10.1016/j.ijimpeng.2005.05.00710.1016/j.ijimpeng.2005.05.007Search in Google Scholar

[15] K.Li, X-L.Gao, J.Wang: Int. J. Solids Struct.44 (2007) 5003. 10.1016/j.ijsolstr.2006.12.01710.1016/j.ijsolstr.2006.12.017Search in Google Scholar

[16] M.Ali, A.Qamhiyah, D.Flugrad, M.Shakoor: Adv. Eng. Software39 (2008) 95. 10.1016/j.advengsoft.2006.12.00610.1016/j.advengsoft.2006.12.006Search in Google Scholar

[17] D.Sun, W.Zhang: Compos. Struct.91 (2009) 168. 10.1016/j.compstruct.2009.04.04510.1016/j.compstruct.2009.04.045Search in Google Scholar

[18] D.Sun, W.Zhang, Y.Wei: Compos. Struct.92 (2010) 2609. 10.1016/j.compstruct.2010.03.01610.1016/j.compstruct.2010.03.016Search in Google Scholar

[19] L.L.Hu, T.X.Yu: Int. J. Impact Eng.37 (2010) 467. 10.1016/j.ijimpeng.2009.12.00110.1016/j.ijimpeng.2009.12.001Search in Google Scholar

[20] Y.Liu, X.C.Zhang: Int. J. Impact Eng.36 (2009) 98. 10.1016/j.ijimpeng.2008.03.00110.1016/j.ijimpeng.2008.03.001Search in Google Scholar

[21] X-L.Gao: Int. J. Press. Vessels. and Pip.57 (1994) 45. 10.1016/0308-0161(94)90096-510.1016/0308-0161(94)90096-5Search in Google Scholar

[22] X-L.Gao: Z. Angew. Math. Phys.58 (2007) 161. 10.1007/s00033-006-0083-410.1007/s00033-006-0083-4Search in Google Scholar

[23] P.J.Tan, S.R.Reid, J.J.Harrigan, Z.Zou, S.Li: J. Mech. Phys. Solids53 (2005) 2206. 10.1016/j.jmps.2005.05.00310.1016/j.jmps.2005.05.003Search in Google Scholar

[24] Y.D.Liu, J.L.Yu, Z.J.Zheng, J.R.Li: Int. J. Solids Struct.46 (2009) 3988. 10.1016/j.ijsolstr.2009.07.02410.1016/j.ijsolstr.2009.07.024Search in Google Scholar

[25] S.R.Reid, C.Peng: Int. J. Impact Eng.19 (1997) 531. 10.1016/S0734-743X(97)00016-X10.1016/S0734-743X(97)00016-XSearch in Google Scholar

[26] J.J.Harrigan, S.R.Reid, C.Peng: Int. J. Impact Eng.22 (1999) 955. 10.1016/S0734-743X(99)00037-810.1016/S0734-743X(99)00037-8Search in Google Scholar

Received: 2011-4-4
Accepted: 2012-2-14
Published Online: 2013-05-15
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Award/Preisverleihung
  4. The Werner-Köster-Preis 2011
  5. Original Contributions
  6. Ostwald ripening in Al–Li alloys: A test of theory
  7. The Mg–C phase equilibria and their thermodynamic basis
  8. Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
  9. Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
  10. Severe tempering of bainite generated at low transformation temperatures
  11. A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
  12. Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
  13. Properties of Si3N4/SiC composites produced via spark plasma sintering
  14. Formation of Al67Cu23Fe10 quasicrystals by microwave heating
  15. Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
  16. On the texture and grain growth in hot-deformed and annealed WE54 alloy
  17. Numerical study of equal-channel angular pressing based on the element-free Galerkin method
  18. Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
  19. Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
  20. Controlled release of ofloxacin from gelatin blended with cloisite 30B
  21. Short Communications
  22. Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
  23. People
  24. Horst Vehoff 65 years
  25. DGM News
  26. DGM News
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110767/pdf
Scroll to top button