Startseite Technik Solution growth of the Gd–Cu–Al systems in the low-gadolinium concentration range
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solution growth of the Gd–Cu–Al systems in the low-gadolinium concentration range

  • Klára Uhlířová und Vladimír Sechovský
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Solution growth of Gd–Cu–Al resulted in the formation of single crystals of GdCu4Al8 with tetragonal ThMn12-type structure (a = 8.751 Å, c = 5.148 Å), Gd2Cu9.4 – 6.7Al7.6 – 10.3 with hexagonal Th2Zn17-type structure (a = 8.83 Å, c = 1.28 Å), and Gd(Cu, Al)4 with orthorhombic CeNi2+xSb2 – x-type structure. An antiferromagnetic ordering of GdCu4Al8 was found below 35 K, which is in agreement with the previously reported TN = 35 K and TN = 32 K measured on polycrystalline samples. In the temperature range 50 – 320 K the magnetic susceptibility χ follows the Curie–Weiss law with μeff = 7.8 μB/f. u. and θp = – 17 K for B c, μeff = 7.9 μB/f. u. and θp = – 18 K for B ⊥ c. The a-axis is the easy magnetization direction. The Gd(Cu, Al)4 and Gd(Cu, Al)4 compounds order antiferromagnetically below TN = 35 K and TN = 31 K, respectively.


* Correspondence address, Klára Uhlířová Charles University in Prague, Faculty of Mathemtaics and Physics Ke Karlovu 5 12116 Praha 2 Czech Republic Tel.: +420 22191 1352 Fax: +420 22491 1061 E-mail:

References

[1] R.V.Gumeniuk, B.M.Stel'makhovych, Y.B.Kuz'ma: J. Alloys Compd.329 (2001) 182.10.1016/S0925-8388(01)01687-5Suche in Google Scholar

[2] T.Krachan, B.M.Stel'makhovych, Y.B.Kuz'ma: J. Alloys Compd.349 (2003) 134.10.1016/S0925-8388(02)00873-3Suche in Google Scholar

[3] B.M.Stel'makhovychR.V.Gumeniuk, Y.Kuz'ma: J. Alloys Compd.307 (2000) 218.10.1016/S0925-8388(00)00833-1Suche in Google Scholar

[4] B.M.Stel'makhovychO.V.Zhak, N.R.Bilas, Y.B.Kuz'ma: J. Alloys Compd.363 (2004) 248.10.1016/S0925-8388(03)00480-8Suche in Google Scholar

[5] O.V.Zhak, Y.B.Kuz'ma: J. Alloys Compd.291 (1999) 175.10.1016/S0925-8388(99)00253-4Suche in Google Scholar

[6] K.H.J.Buschow, J.H.N.Van Vucht, W.W.Van Den Hoogenhof: J. Less Common Metals50 (1976) 145.10.1016/0022-5088(76)90261-7Suche in Google Scholar

[7] N.P.Duong, J.C.P.Klaasse, E.Bruck, F.R.de Boer, K.H.J.Buschow: J. Alloys Compd.315 (2001) 28.10.1016/S0925-8388(00)01288-3Suche in Google Scholar

[8] W.Suski, in: K.A.GschneidnerJr., L.Eyring (Ed.), Handbook on the Physics and Chemistry of Rare Earths, Vol 22, Elsevier Science B.V. (1996) 149.Suche in Google Scholar

[9] V.K.Pecharsky, Y.V.Pankevich, O.I.Bodak: Dopovidi Akademii Nauk Ukrainskoi Rsr Seriya B-Geologichni Khimichni Ta Biologichni Nauki4 (1982) 44.Suche in Google Scholar

[10] B.V.Stel'makhovychO.Stel'makhovych, Y.Kuz'ma: J. Alloys Compd.397 (2005) 115.10.1016/j.jallcom.2005.01.033Suche in Google Scholar

[11] P.C.Canfield, Z.Fisk: Phyl. Mag. B65 (1992) 1117.10.1080/13642819208215073Suche in Google Scholar

[12] P.C.Canfield, I.R.Fischer: J. Cryst. Growth225 (2001) 155.10.1016/S0022-0248(01)00827-2Suche in Google Scholar

[13] S.H.Zhou, R.E.Napolitano: Acta Mater.54 (2006) 831.10.1016/j.actamat.2005.10.013Suche in Google Scholar

Received: 2008-8-25
Accepted: 2009-2-12
Published Online: 2013-06-11
Published in Print: 2009-09-01

© 2009, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. History
  4. Pierre Auger – Lise Meitner: Comparative contributions to the Auger effect
  5. Surface and grain-boundary segregation studied by quantitative AES and XPS
  6. High temperature mechanical spectroscopy of fine-grained ceramics
  7. The effect of electro-thermal fatigue on the structure of power electronic devices. Micro-structural evolution of the metallization layer
  8. f-Element hydrides: structure and magnetism
  9. Basic
  10. Hydrogen as a probe into 5f-magnetism
  11. Magnetism in PrPdSn and NdPdSn studied on single crystals
  12. Magnetic properties of fcc Ni-based transition metal alloys
  13. X-ray characterization of magnetic digital alloys
  14. Are RENiAl hydrides metallic?
  15. HoZn5Al3: rare-earth magnetism in a new structure type
  16. The influence of substitutions on the magnetocaloric effect in RCo2 compounds
  17. Thickness shear modes and magnetoelastic waves in a bi-layered structure: magnetic film–non-magnetic substrate
  18. Electrochemical properties of fine-grained AZ31 magnesium alloy
  19. Severe plastic deformation in Gum Metal with composition at the structural stability limit
  20. Applied
  21. Structural, magnetic, and transport properties of quantum well GaAs/δ-Mn/GaAs/InxGa1–xAs/GaAs heterostructures
  22. Effect of co-doping by Pb and La on structural and magnetic properties of Bi2212 superconducting ceramics
  23. Magnetic properties of the hydrogenated unconventional superconductor UCoGe–H
  24. Electrophoresis deposition of metal nanoparticles with reverse micelles onto InP
  25. Electronic structure and electric field gradient calculations for the Zr2Ni intermetallic compound
  26. Solution growth of the Gd–Cu–Al systems in the low-gadolinium concentration range
  27. Low-temperature specific heat of selected ceramics
  28. Novel behaviors in rare-earth-filled skutterudites studied by bulk-sensitive photoemission spectroscopy
  29. Charge transport in photosensitive nanocrystalline PbTe(In) films in an alternating electric field
  30. Enrichment and depletion of alloying elements in surface layers of iron base alloys annealed under different conditions
  31. Notifications
  32. Personal
Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110180/pdf
Button zum nach oben scrollen