Startseite Technik Electronic structure and electric field gradient calculations for the Zr2Ni intermetallic compound
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electronic structure and electric field gradient calculations for the Zr2Ni intermetallic compound

  • A. Umićević , J. Belošević-Čavor , V. Koteski , B. Cekić und V. Ivanovski
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A detailed theoretical study of the structure and electric field gradients (EFG) of the Zr2Ni compound is presented. Using all-electron augmented plane waves plus local orbitals formalism, the equilibrium volume, bulk modulus, and EFGs at both non-equivalent crystallographic positions, Zr and Ni, are calculated. The possible mechanism of formation of the EFGs at both sites are analyzed and discussed. We have also performed supercell calculations with Cd and Ta impurities. Through the comparison of theoretical and experimental EFGs in these cases, we elucidate the role played by the Cd and Ta probe atoms in the time-differential perturbed angular correlation measurements of this compound.


* Correspondence address, Ana Umicevic Institute of Nuclear Sciences Vinca P.O. Box 522, 11001 Belgrade, Serbia Tel.: +381 11 3408 549 Fax: +381 11 3440 100 E-mail:

References

[1] A.R.Miedema, P.F.de Châtel, F.R.de Boer: Physica 100 B (1980) 1.10.1016/0378-4363(80)90054-6Suche in Google Scholar

[2] P.Wodniecki, B.Wodniecka, A.Kulinska, M.Uhrmacher: Hyperfine Interactions158 (2004) 423.10.1007/s10751005-9070-ySuche in Google Scholar

[3] B.Wodniecka, M.Marszalek, P.Wodniecki, A.Z.Hrynkiewicz: Hyperfine Interactions80 (1993) 1039.10.1007/BF00567462Suche in Google Scholar

[4] A.N.Poynor, S.E.Cumblidge, R.L.Rasera, G.L.Catchen, A.T.Motta: Hyperfine Interactions136/137 (2001) 549.10.1023/A:1020578909175Suche in Google Scholar

[5] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM Materials Park, Ohio (1996).Suche in Google Scholar

[6] P.Blaha, K.Schwarz, G.K.H.Madsen, D.Kvasnicka, J.Luitz: WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria (2001).Suche in Google Scholar

[7] A.R.Williams, J.Kubler, C.D.GelattJr: Phys. Rev. B19 (1979) 6094.10.1103/PhysRevB.19.6094Suche in Google Scholar

[8] J.P.Perdew, S.Burke, M.Ernzerhof: Phys. Rev. Lett.77 (1996) 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar

[9] P.E.Blochl, O.Jepsen, O.K.Andersen: Phys. Rev. B49 (1994) 16223.10.1103/PhysRevB.49.16223Suche in Google Scholar

[10] F.D.Murnaghan: Proceedings of the National Acadamy of Sciences U.S.A. 30 (1944) 244.10.1073/pnas.30.9.244Suche in Google Scholar

[11] P.Blaha, K.Schwarz: Phys. Rev. Lett.54 (1985) 1192.10.1103/PhysRevLett.54.1192Suche in Google Scholar

[12] A.Kokalj: J. Mol. Graphics Modelling17 (1999) 176.10.1016/S1093-3263(99)00028-5Suche in Google Scholar

Received: 2008-8-25
Accepted: 2009-2-12
Published Online: 2013-06-11
Published in Print: 2009-09-01

© 2009, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. History
  4. Pierre Auger – Lise Meitner: Comparative contributions to the Auger effect
  5. Surface and grain-boundary segregation studied by quantitative AES and XPS
  6. High temperature mechanical spectroscopy of fine-grained ceramics
  7. The effect of electro-thermal fatigue on the structure of power electronic devices. Micro-structural evolution of the metallization layer
  8. f-Element hydrides: structure and magnetism
  9. Basic
  10. Hydrogen as a probe into 5f-magnetism
  11. Magnetism in PrPdSn and NdPdSn studied on single crystals
  12. Magnetic properties of fcc Ni-based transition metal alloys
  13. X-ray characterization of magnetic digital alloys
  14. Are RENiAl hydrides metallic?
  15. HoZn5Al3: rare-earth magnetism in a new structure type
  16. The influence of substitutions on the magnetocaloric effect in RCo2 compounds
  17. Thickness shear modes and magnetoelastic waves in a bi-layered structure: magnetic film–non-magnetic substrate
  18. Electrochemical properties of fine-grained AZ31 magnesium alloy
  19. Severe plastic deformation in Gum Metal with composition at the structural stability limit
  20. Applied
  21. Structural, magnetic, and transport properties of quantum well GaAs/δ-Mn/GaAs/InxGa1–xAs/GaAs heterostructures
  22. Effect of co-doping by Pb and La on structural and magnetic properties of Bi2212 superconducting ceramics
  23. Magnetic properties of the hydrogenated unconventional superconductor UCoGe–H
  24. Electrophoresis deposition of metal nanoparticles with reverse micelles onto InP
  25. Electronic structure and electric field gradient calculations for the Zr2Ni intermetallic compound
  26. Solution growth of the Gd–Cu–Al systems in the low-gadolinium concentration range
  27. Low-temperature specific heat of selected ceramics
  28. Novel behaviors in rare-earth-filled skutterudites studied by bulk-sensitive photoemission spectroscopy
  29. Charge transport in photosensitive nanocrystalline PbTe(In) films in an alternating electric field
  30. Enrichment and depletion of alloying elements in surface layers of iron base alloys annealed under different conditions
  31. Notifications
  32. Personal
Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110179/pdf
Button zum nach oben scrollen