Home Thermodynamic description of the Ce-Mg-Y and Mg-Nd-Y systems
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic description of the Ce-Mg-Y and Mg-Nd-Y systems

  • Cuiping Guo , Zhenmin Du and Changrong Li
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The thermodynamic modeling and optimization of the Ce-Mg, Ce-Y, Mg-Nd, Nd-Y, Ce-Mg-Y and Mg-Nd-Y systems have been carried out by means of the CALPHAD technique. The solution phases, liquid, body-centered cubic, face-centered cubic, hexagonal close-packed and double hexagonal close-packed, were described by the substitutional solution model. The isostructural MgCe, MgNd and MgY phases with B2 structure form continuous range of solid solutions in the Ce-Mg-Y and Mg-Nd-Y ternary systems. The order-disorder transition between the solutions with A2 structure and compounds with B2 structure in the systems has been taken into account and thermodynamically modeled. The other compounds Mg2Y, Mg24Y5, Mg3R, Mg41R5, Mg2R and Mg12Ce (R = Ce and Nd) in the Mg-R-Y system exhibit different solubilities of the third component. A set of self-consistent thermodynamic descriptions of the Ce-Mg-Y and Mg-Nd-Y systems was obtained.


* Correspondence address, Professor Zhenmin Du Department of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083, P. R. China. Tel./Fax: +86 10 6233 3772 E-mail:

References

[1] G.Cacciamani, G.Borzone, R.Ferro, in: I.Ansara, A.T.Dinsdale, M.H.Rand, (Eds.), COST507, Thermochemical database for light metal alloys, European Commission, Luxembourg (1998) 137140.Search in Google Scholar

[2] C.Guo, Z.Du: Z. Metallkd.97 (2006) 130135.Search in Google Scholar

[3] K.A.GschneidnerJr., F.W.Calderwood: Bull. Alloy Phase Diagrams3 (1982) 192193.10.1007/BF02892383Search in Google Scholar

[4] H.Flandorfer, M.Giovanni, A.Saccone, P.Rogl, R.Ferro: Metal. Mater. Trans. A28 (1997) 265275.10.1007/s11661-997-0129-zSearch in Google Scholar

[5] M.E.Drits, E.M.Padezhnova, T.V.Dobatkina, E.A.Votekhova, V.V.Kinzhibalo: Russ. Metall.6 (1981) 200203.Search in Google Scholar

[6] E.M.Padezhonva, E.V.Melnik, V.V.Kinzhibalo, T.V.Dobatkina: Russ. Metall.6 (1981) 220223.Search in Google Scholar

[7] F.H.Spedding, R.M.Valletta, A.H.Daane: Trans. ASM55 (1962) 483491.Search in Google Scholar

[8] C.G.Kirkpatrick, B.Love, in: F.J.Nachman, C.E.Lundin (Eds.), Rare Earth Research, New York, Gordon and Breach (1962) 87103.Search in Google Scholar

[9] B.J.Beaudry, M.Michael, A.H.Daane, F.H.Spedding, in: L.Eyring (Eds.), Rare Earth Research III, New York, Gordon and Breach (1965) 247. Cited from [11].Search in Google Scholar

[10] V.N.Svechnikov, G.V.Kobzenko, E.J.Martynchuk: Dopov. Akad. Nauk Ukr. RSR, Ser. A (1972) 754. Cited from [11].Search in Google Scholar

[11] K.A.GschneidnerJr., F.W.Calderwood: Bull. Alloy Phase Diagrams3 (1982) 202205.10.1007/BF02892389Search in Google Scholar

[12] T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprzak: Binary Alloy Phase Diagrams, Second Edition, ASM international, Materials Park, Ohio (1990).Search in Google Scholar

[13] Z.A.Sviderskaya, E.H.Padezhnova: Russ. Metal.6 (1971) 141144.Search in Google Scholar

[14] Z.A.Sviderskaya, E.H.Padezhnova: Strukt. Svoistv. Legk, Splavo (1971) 610. Cited from [15].Search in Google Scholar

[15] J.Groebner, in: G.Effenberg, F.Aldinger, P.Rogl (Eds.), Ternary alloys, A comprehensive compendium of evaluated constitutional data and phase diagram, Vol. 18, MSI, Stuttgart (2001) 324335.Search in Google Scholar

[16] B.Smola, I.Stulíková: J. Alloys Comp.381 (2004) L1L 2.10.1016/j.jallcom.2004.02.049Search in Google Scholar

[17] F.G.Meng, J.Wang, H.S.Liu, L.B.Liu, Z.P.Jin: Mater. Sci. Eng.454–455 (2007) 266273.10.1016/j.msea.2006.11.048Search in Google Scholar

[18] A.T.Dinsdale: SGTE pure elements (unary) database, Version 4.5 (2006).Search in Google Scholar

[19] A.A.Nayeb-Hashemi, J.B.Clark: Bull. Alloys Phase Diagrams9 (1988) 162172.10.1007/BF02890557Search in Google Scholar

[20] A.A.Nayeb-Hashemi, J.B.Clark: Bull. Alloys Phase Diagrams9 (1988) 618623.10.1007/BF02881965Search in Google Scholar

[21] C.Guo, Z.Du, C.Li: Calphad32 (2008) 177187.10.1016/j.calphad.2007.05.007Search in Google Scholar

[22] F.Bonhomme, K.Yvon: J. Alloys Comp.232 (1996) 271273.10.1016/0925-8388(95)01927-8Search in Google Scholar

[23] O.B.Fabrichnaya, H.L.Lukas, G.Effenberg, F.Aldinger: Intermetallics11 (2003) 11831188.10.1016/S0966-9795(03)00156-0Search in Google Scholar

[24] C.Guo, Z.Du, C.Li: Calphad31 (2007) 7588.10.1016/j.calphad.2006.10.004Search in Google Scholar

[25] I.Ansara, N.Dupin, H.L.Lukas, B.Sundman: J. Alloys Comp.247 (1997) 2030.10.1016/S0925-8388(96)02652-7Search in Google Scholar

[26] A.Saccone, D.Maccio, S.Delfino, F.H.Hayes, R.Ferro: J. Thermal Analysis and Calorimetry66 (2001) 4757.10.1023/A:1012427429404Search in Google Scholar

[27] B.Sundman, B.Jansson, J-O.Andersson: Calphad9 (1985) 153190.10.1016/0364-5916(85)90021-5Search in Google Scholar

[28] S.Delfino, A.Saccone, R.Ferro: Metall. Trans.A21 (1990) 21092114.10.1007/BF02647869Search in Google Scholar

[29] J.L.Haughton, T.H.Schonfield: J. Inst. Metals60 (1937) 339344.Search in Google Scholar

[30] R.R.Joseph, K.A.GschneidnerJr.: Trans. AIME223 (1965) 20632069.Search in Google Scholar

[31] D.H.Wood, E.M.Cramer: J. Less-Common Met.9 (1965) 321337.10.1016/0022-5088(65)90115-3Search in Google Scholar

[32] W.Blitz, H.Piper: Z. Anorg. Chem.134 (1924) 1324.10.1002/zaac.19241340103Search in Google Scholar

[33] J.E.Pahlman, J.F.Smith: Metall. Trans.1 (1972) 24232432.10.1007/BF02647045Search in Google Scholar

[34] F.G.Meng, J.Wang, L.B.Liu, H.S.Liu, Z.P.Jin: Calphad30 (2006) 323325.10.1016/j.calphad.2006.02.002Search in Google Scholar

[35] Z.Du, C.Guo, C.Li, W.Zhang: Rare Metals25 (2006) 492500.10.1016/S1001-0521(06)60090-9Search in Google Scholar

[36] A.K.Niessen, F.R.de Boer, R.Boom, P.de Chatel, W.C.M.Mattens, A.R.Miedema: Calphad7 (1983) 5170.10.1016/0364-5916(83)90030-5Search in Google Scholar

Received: 2007-12-9
Accepted: 2008-4-1
Published Online: 2013-06-11
Published in Print: 2008-06-01

© 2008, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. 1st Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
  5. Basic
  6. First-principles calculations of the thermodynamic and elastic properties of the L12-based Al3RE (RE = Sc, Y, La–Lu)
  7. From binary assessments to thermodynamic databases
  8. Construction of the Al–Ni–Si phase diagram over the whole composition and temperature ranges: thermodynamic modeling supported by key experiments and first-principles calculations
  9. Modeling rapid liquid/solid and solid/liquid phase transformations in Al alloys
  10. Multiphase/multicomponent modeling of solidification processes: coupling solidification kinetics with thermodynamics
  11. Molecular dynamics study of the hcp–bcc phase transformation in nanocrystalline zirconium
  12. Thermodynamic description of multi-component multi-phase alloys and its application to the solidification process
  13. Applied
  14. Phase-diagram-related problems in thermoelectric materials: Skutterudites as an example
  15. Phase equilibria of the Al–Ni–Zn system at 340°C
  16. Thermodynamic description of the Ce-Mg-Y and Mg-Nd-Y systems
  17. Experimental and theoretical study of the phase relations in the zinc-rich corner of the Zn–Fe–Cr system at 450°C
  18. Formation of primary TiN precipitates during solidification of microalloyed steels – Scheil versus DICTRA simulations
  19. ThermoCalc-based numerical computations for temperature, fraction of solid phase and composition couplings in alloy solidification
  20. Effect of yttrium addition on the glass forming ability of Co-based alloys
  21. Phase equilibria in the Y–Ti–Si system at 773 K
  22. DGM News
  23. Personal
Downloaded on 10.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101685/html
Scroll to top button