Startseite The role of chemisorbed anions in the aqueous processing of AlN powder
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of chemisorbed anions in the aqueous processing of AlN powder

  • Kristoffer Krnel und Tomažv Kosmačv
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the production of ceramics containing AlN it is necessary to prevent the AlN powder from reacting with water. To do that, non-aqueous powder processing is required or water-resistant AlN powders must be used. Alternatively, as in the Hydrolysis Assisted Solidification process, which exploits the hydrolysis of AlN for the solidification of the ceramic suspensions, the hydrolysis has to be prevented at room temperature but initiated at elevated temperatures. In this study the role of the chemisorbed anions in the hydrolysis of the AlN was investigated in order to make the control of the hydrolysis reactions possible. The method for preparing water-resistant, hydrophilic AlN powder using the dispersion of the powder in a solution of aluminium dihydrogen phosphate is also presented. The mechanism leading to the formation of the protective surface layer is proposed and explained. The method was also successfully tested on nanosized AlN powder. This powder was processed in water and sintered to high density.


* Correspondence address: Dr. Kristoffer Krnel, Engineering Ceramics Department, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Tel.: +38614773784, Fax: +38614773221. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] P.Bowen, J.G.Highfield, A.Mocellin, T.A.Ring: J. Am. Ceram. Soc.73 (1990) 724.10.1111/j.1151-2916.1990.tb06579.xSuche in Google Scholar

[2] T.Reetz, B.Monch, M.Saupe: Ber. DKG68 (1992) 464.Suche in Google Scholar

[3] F.Barba, P.Ortega, J.Bermundo, M.I.Osendi, J.S.Moya: J. Europ. Ceram. Soc.13 (1994) 335.10.1016/0955-2219(94)90008-6Suche in Google Scholar

[4] E.A.Groat, J.MrozJr.: Ceramic Industry143 (1993) 34.Suche in Google Scholar

[5] J.S.Reed: Introduction to the Principles of Ceramic Processing. John Wiley & Sons, New York, 1988.Suche in Google Scholar

[6] T.Kosmačv, S.Novak, M.Sajko: J. Europ. Ceram. Soc.17 (1997) 427.10.1016/S0955-2219(96)00175-6Suche in Google Scholar

[7] T.Kosmačv, S.Novak, K.Krnel: Z. Metallkd.92 (2001) 150.Suche in Google Scholar

[8] W.Li, Z.Liu, M.Gu, Y.Jin: Ceram. Int.31 (2005) 159.10.1016/j.ceramint.2004.04.006Suche in Google Scholar

[9] K.Krnel, G.Dražvičv, T.Kosmačv: J. Mater. Res.19 (2004) 1157.10.1557/JMR.2004.0150Suche in Google Scholar

[10] K.Krnel, T.Kosmačv: J. Am. Ceram. Soc.83 (2000) 1375.10.1111/j.1151-2916.2000.tb01396.xSuche in Google Scholar

[11] H.Görter, J.Gerretsen, R.A.Terpstra, in: P.Duran, J.P.Fernandez (Eds.), 3rd Euroceramics V1, Faenza Editrice Iberica, S.C. (1993) 615.Suche in Google Scholar

[12] M.Egashira, Y.Shimizu, S.Takasuki: J. Mater. Sci. Let.10 (1991) 994.10.1007/BF00721824Suche in Google Scholar

[13] S.Fukumoto, T.Hookabe, H.Tsubakino: J. Mater. Sci.35 (2000) 2743.10.1023/A:1004718329003Suche in Google Scholar

[14] K.Krnel, T.Kosmačv, in: G.L.Messing, F.F.Lange, S.Hirano (Eds.), Ceramic Processing Science (Ceramic Transactions, Vol.83), The American Ceramic Society, Westerville (1998) 257.Suche in Google Scholar

[15] K.Krnel, T.Kosmačv: J. Am. Ceram. Soc.85 (2002) 484.10.1111/j.1151-2916.2002.tb00117.xSuche in Google Scholar

[16] K.Krnel, T.Kosmačv: J. Eur. Ceram. Soc.21 (2001) 2075.10.1016/S0955-2219(01)00175-3Suche in Google Scholar

[17] G.D.Davis, J.S.Ahearn, J.D.Venables: J. Vac. Sci. Technol.A2 (1984) 763.Suche in Google Scholar

[18] J.G.Highfield, P.Bowen: Anal. Chem.61 (1989) 2399.10.1021/ac00196a016Suche in Google Scholar

[19] A.I.Omoike, G.W.Vanloon: Wat. Res.33 (1999) 3617.10.1016/S0043-1354(99)00075-5Suche in Google Scholar

[20] S.M.Olhero, S.Novak, M.Oliviera, K.Krnel, T.Kosmačv, J. M. F.Ferreira: J. Mater. Res.19 (2004) 746.10.1557/jmr.2004.19.3.746Suche in Google Scholar

Received: 2005-12-12
Accepted: 2006-2-7
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101284/html
Button zum nach oben scrollen