Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
-
F. Ernst
Abstract
A novel process, “nitridation under kinetic control of the nitrogen activity”, has been developed for diffusing substantial amounts (≍10at.%) of interstitially dissolved nitrogen into the surface of Ti alloys (Ti–6Al–4V). By operating with a gas phase providing a very small, controlled nitrogen activity, this process generates a homogeneous Ti–N solid solution, free of detrimental titanium nitride precipitates, in which the nitrogen concentration smoothly decreases from the surface towards the interior. The process is conformal (applicable to workpieces of arbitrary shape) and provides a substantial (about twofold) increase in surface hardness. The hardened surface layer appears to possess adequate ductility for many structural applications. The concept of “surface alloying under kinetic control” is very general and may also serve to generate well-controlled surface concentration profiles of carbon or oxygen in Ti-base and other structural alloys.
References
[1] G.Lütjering, J. C.Williams: Titanium, Springer, 2003.10.1007/978-3-540-71398-2Suche in Google Scholar
[2] T.Bell, H.W.Bergmann, J.Lanagan, P.H.Morton, A. M.Staines: Surface Engineering2 (2) (1986) 133.10.1179/sur.1986.2.2.133Suche in Google Scholar
[3] T.Sato, K.Akashi: J. Jap. Inst. Light Metals42 (11) (1992) 650.10.2464/jilm.42.650Suche in Google Scholar
[4] H.J.Spies, U.Brusky, B.L.Mordike, C.Blawert, V.P.Hubner: Materialwissenschaft und Werkstofftechnik30 (8) (1999) 457.10.1002/(SICI)1521-4052(199908)30:8<457::AID-MAWE457>3.0.CO;2-HSuche in Google Scholar
[5] H.Dong, A.Bloyce, T.Bell, in: Surface Performance of Titanium, Proceedings of a Symposium, 1996 TMS Meeting, Sch. of Metall. & Mater., Birmingham Univ., UK, 1996, p.23.Suche in Google Scholar
[6] T.A.Panaioti: Metallovedenie i Termicheskaya Obrabotka Metallov40 (9) (1998) 32.Suche in Google Scholar
[7] Z.Okamoto, H.Hoshika, M.Yakushiji, in: Technology Reports of Kansai University, Kansai Univ, 2001, p. 167.Suche in Google Scholar
[8] N.Yasumaru, K.Tsuchida, E.Saji, T.Ibe: Mater. Trans. JIM34 (8) (1993) 696.10.2320/matertrans1989.34.696Suche in Google Scholar
[9] N.Yasumaru, K.Tsuchida, E.Saji, T.Ibe: J. Jap. Inst. of Metals56 (1) (1992) 104.10.2320/jinstmet1952.56.1_104Suche in Google Scholar
[10] A.Bloyce: Proceedings of the Institution of Mechanical Engineers, Part J (Journal of Engineering Tribology) 212 (1998) 467.10.1243/1350650981542263Suche in Google Scholar
[11] J.L.Viviente, A.Garcia, A.Loinaz, F.Alonso, J.I.Onate: Vacuum52(1–2) (1999) 141.10.1016/S0042-207X(98)00213-9Suche in Google Scholar
[12] F.D.Lai, T.I.Wu, J.K.Wu: Surface and Coatings Techn.58 (1) (1993) 79.10.1016/0257-8972(93)90177-PSuche in Google Scholar
[13] T.I.Wu, J.K.Wu: Surface and Coatings Techn.90 (3) (1997) 258.10.1016/S0257-8972(96)03134-9Suche in Google Scholar
[14] T.I.Wu, J.K.Wu: Metall. Trans. A (Physical Metallurgy and Materials Science)24 (5) (1993) 1181.10.1007/BF02657249Suche in Google Scholar
[15] T.I.Wu, J.K.Wu: Scripta Metall. et Mater.25 (10) (1991) 2335.10.1016/0956-716X(91)90025-VSuche in Google Scholar
[16] M.Okutomi, A.Obara, K.Tsukamoto, in: Proceedings of Elevated Temperature Coatings: Science and Technology III. TMS Annual Meeting, Optoelectron. Div., Electrotech. Lab., Tsukuba, Japan, 1999, p.341.Suche in Google Scholar
[17] M.Okutomi, A.Obara, K.Tsukamoto, H.L.Shen, in: Proceedings of the SPIE – The International Society for Optical Engineering, Vol.3550, Div. of Optoelectron., Electrotech. Lab., Tsukuba, Japan, 1998, p. 229.10.1117/12.317946Suche in Google Scholar
[18] A.Obara, M.Okutomi: Bull. Electrotechn. Lab.60 (10) (1996) 35.Suche in Google Scholar
[19] C.Blawert, B.L.Mordike, A.Weisheit: Surface and Coatings Techn.93(2–3) (1997) 297.10.1016/S0257-8972(97)00064-9Suche in Google Scholar
[20] B.L.Mordike: Key Engineering Mater.46–47 (1990) 13.10.4028/www.scientific.net/KEM.46-47.13Suche in Google Scholar
[21] H.M.Flower, A.Walker, D.R.F.West: Scripta Metall.19 (8) (1985) 923.10.1016/0036-9748(85)90283-2Suche in Google Scholar
[22] Y.Wei, W.Xiaoxiang: Rare Metal Mater. and Eng.34 (3) (2005) 471.Suche in Google Scholar
[23] H.Guleryuz, H.Cimenoglu: Surface & Coatings Techn.192 (2–3) (2005) 164.10.1016/j.surfcoat.2004.05.018Suche in Google Scholar
[24] W.Yan, X.X.Wang, in: 4th International Conference on Mechanochemistry and Mechanical Alloying (INCOME 2003), Vol.39, Mater. Sci. & Eng., Zhejiang Univ., Hangzhou, China, 2004, p.5583.Suche in Google Scholar
[25] P.A.Dearnley, K.L.Dahm, H.Cimenoglu: Wear256 (5) (2004) 469.10.1016/S0043-1648(03)00557-XSuche in Google Scholar
[26] M.Hongyan, W.Maocai, Z.Song, X.Gongchun, W.Zheng: Trans. Nonferrous Metals Society of China13 (1) (2003) 73.Suche in Google Scholar
[27] P.Y.Qi, X.Y.Li, H.Dong, T.Bell: Mater. Sci. & Eng. A (Structural Materials: Properties, Microstructure and Processing)A326 (2) (2002) 330.10.1016/S0921-5093(01)01701-4Suche in Google Scholar
[28] H.Dong, T.Bell: Wear238 (2) (2000) 131.10.1016/S0043-1648(99)00359-2Suche in Google Scholar
[29] A.Bloyce, P.Y.Qi, H.Dong, T.Bell: Surface and Coatings Techn.107(2–3) (1998) 125.10.1016/S0257-8972(98)00580-5Suche in Google Scholar
[30] H.Dong, A.Bloyce, P.H.Morton, T.Bell: Surface Engineering13 (5) (1997) 402.10.1179/sur.1997.13.5.402Suche in Google Scholar
[31] P.G.Oberson, S.Ankem: Phys. Rev. Lett.95 (16) (2005) 165501/1.10.1103/PhysRevLett.95.165501Suche in Google Scholar PubMed
[32] M.von Mises: Z. Angew. Math. Mech. (8) (1928) 161.10.1002/zamm.19280080302Suche in Google Scholar
[33] L.Liu, F.Ernst, G.M.Michal, A.H.Heuer: Metall. and Mater. Trans.36 (2005) 2429.10.1007/s11661-005-0115-2Suche in Google Scholar
[34] J.Bars, D.David, E.Etchessahar, J.Debuigne: Metall. Trans.A14 (1983) 1537.Suche in Google Scholar
[35] E.Metin, O.T.Inal: Metall. Trans. A (Physical Metallurgy and Materials Science)20 (1989) 1819.10.1007/BF02663213Suche in Google Scholar
[36] L.Liu: Doctoral thesis, Case Western Reserve University (2004).Suche in Google Scholar
[37] J.Blush: Masters thesis, Case Western Reserve University (2004).Suche in Google Scholar
[38] J.Crank: The mathematics of diffusion, Clarendon Press, Oxford, 1956.Suche in Google Scholar
[39] J.Blush: Surface Engineering20 (6) (2004) 411.10.1179/sur.2004.20.6.411Suche in Google Scholar
[40] M.W.J.Chase: NIST-JANAF Thermochemical Tables, 4th Edition, American Chemical Society, 1998.Suche in Google Scholar
[41] G.Welsch, W.Bunk: Metall. Trans. A (Physical Metallurgy and Materials Science)A13 (5) (1982) 889.10.1007/BF02642403Suche in Google Scholar
[42] Z.Liu, G.Welsch: Metall. Trans.A19 (1988) 527.Suche in Google Scholar
[43] Z.Miskovic, B.Dimcic, I.Bobic, S.Zec, M.T.Jovanovic: Mater. Sci. Forum494 (2005) 561.10.4028/www.scientific.net/MSF.494.561Suche in Google Scholar
[44] M.Winter (2005). URL http://www.webelements.com/Suche in Google Scholar
[45] F.Ernst, Y.Cao, G.Michal: Acta Mater.52 (2004) 1469.10.1016/j.actamat.2003.11.027Suche in Google Scholar
[46] Y.Cao, F.Ernst, G.Michal: Acta Mater.51 (2003) 4171.10.1016/S1359-6454(03)00235-0Suche in Google Scholar
[47] G.M.Michal, F.Ernst, H.Kahn, Y.Cao, F.Oba, N.Agarwal, A. H.Heuer: Acta Mater. (2005) in press.Suche in Google Scholar
[48] G.M.Michal, F.Ernst, A.H.Heuer: Metall. and Mater. Trans. (2005) in press.Suche in Google Scholar
[49] SGTE, SGTE phase diagram collection (2004).URL http://web.met.kth.se/dct/pd/element/N-Ti.htmlSuche in Google Scholar
[50] H.A.Wriedt, J.L.Murray: Bulletin of Alloy Phase Diagrams8 (4) (1987) 378.10.1007/BF02869274Suche in Google Scholar
© 2006, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News