Startseite Technik Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

  • Yu. V. Saunin , A. N. Dobrotvorski , A. V. Semenikhin , A. S. Korolev und S. I. Ryasny
Veröffentlicht/Copyright: 18. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The JSC “Atomtechenergo” experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

Kurzfassung

Das JSC „Atomtechenergo” hat eine neue Methodik zur Bestimmung der gewichteten mittleren Kühlmitteltemperatur in den heißen Strängen des Primärkreislaufs von WWER-1000-Reaktoren entwickelt. Dabei sollte insbesondere der durch die Schichtung der Kühlmitteltemperatur im heißen Strang auftretende Fehler bei der Berechnung der gewichteten mittleren Kühlmitteltemperatur verringert werden. Dabei zogen die Autoren sowohl eigene experimentelle als auch eigene analytische Untersuchungen heran. Bei der Verifikation wurden analytische Ergebnisse ohne und unter Verwendung des neuen Modells verglichen für eine Vielzahl von Betriebszuständen und Betriebsmodi verschiedenster WWER-1000-Reaktoren. Dabei zeigte sich, dass die Verwendung der neuen Methodik zu einer objektiven Fehlerabsenkung bei der Bestimmung der gewichteten mittleren Kühlmitteltemperatur in den primärseitigen Heißsträngen führt. Die Höhe der Absenkung ist direkt abhängig vom Charakter der Temperaturschichtung und von den verschiedenen Betriebszuständen.


* E-mail:

References

1 Saunin, Yu. V.; Dobrotvorsky, A. N.; Semenikhin, A. V.: Examination of factors determining the coolant thermal stratification in hot legs of primary circuit loops of NPPs with WWER-1000 reactors. Proc. 8th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER, JSC EDO “Gidropress”, Podolsk, 2013 (in Russian)Suche in Google Scholar

2 Saunin, Yu. V.; Dobrotvorski, A. N.; Semenikhin, A. V.; Ryasny, S. I.; Kulish, G. V.; Abdullaev, A. M.: Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000. Kerntechnik80 (2015) 36637210.3139/124.110511Suche in Google Scholar

3 Dery, V. P.; Shestakov, N. B.; Arutyunyan, A. H.: More precise definition of MCP flow rate characteristics, definition of additive corrections to the coolant temperature monitoring at a rated power (determination of average coolant temperature in PCP loops) for exact calculation of RP thermal power with primary circuit parameters. Proc. 9th Int. Conf. Safety, efficiency and atomic engineering economy, JSC “Concern Rosenergoatom”, Moscow, 2014, (in Russian)Suche in Google Scholar

4 Hashemian, H. M.: Maintenance of Process Instrumentation in Nuclear Power Plants. Springer-VerlagBerlin Heidelberg, 2006Suche in Google Scholar

5 Chiang, J.S.C.; et al.: Pressurized Water Reactor (PWR) Hot-leg Streaming. Part 1: Computation Fluid Dynamics (CFD) Simulations. Nuclear Engineering and Design241 (2011) 1768177510.1016/j.nucengdes.2009.12.028Suche in Google Scholar

6 Prasser, H.-M.; Kliem, S.: Coolant mixing experiments in the upper plenum of the ROCOM test facility. Nucl. Eng. Design276 (2014) 304210.1016/j.nucengdes.2014.05.016Suche in Google Scholar

7 Saunin, Yu. V., Dobrotvorski, A. N., Semenikhin, A. V., Ryasny, S. I.: Methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. Kerntechnik81 (2016) 38737210.3139/124.110710Suche in Google Scholar

Received: 2017-02-08
Published Online: 2017-08-18
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2016
  7. Technical Contributions/Fachbeiträge
  8. Physical startup tests for VVER-1200 of Novovoronezh NPP: advanced technique and some results
  9. Experimental study of asymmetric boron dilution at VVER-1000 of Kudankulam NPP and its simulation
  10. Study on the impact of transition from 3-batch to 4-batch loading at Loviisa NPP on the long-term decay heat and activity inventory
  11. New engineering safety factors for Loviisa NPP core calculations
  12. Development of fuel cycles with new fuel with 8.9 mm external diameter for VVER-440: Preliminary assessment of operating efficiency
  13. Investigation of circulating temperature fluctuations of the primary coolant in order to develop an enhanced MTC estimator for VVER-440 reactors
  14. Recalculating the steady state conditions of the V-1000 zero-power facility at Kurchatov Institute using Monte Carlo and nodal diffusion codes
  15. Start-up of a cold loop in a VVER-440, the 7th AER benchmark calculation with HEXTRAN-SMABRE-PORFLO
  16. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
  17. Advances in HELIOS2 nuclear data library
  18. ANDREA 2.2 and 2.3 – Advances in modelling of VVER cores
  19. CFD analyses of the rod bowing effect on the subchannel outlet temperature distribution
  20. A methodology for the estimation of the radiological consequences of a Loss of Coolant Accident
  21. Neutron balance as indicator of long-term resource availability in growing nuclear energy system
  22. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system
  23. Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core
Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110825/pdf
Button zum nach oben scrollen