Home Technology Efficient introduction of natural uranium and thorium into nuclear energy system
Article
Licensed
Unlicensed Requires Authentication

Efficient introduction of natural uranium and thorium into nuclear energy system

  • V. Blandinskiy
Published/Copyright: August 10, 2016
Become an author with De Gruyter Brill

Abstract

This article describes differences between two approaches of understanding the main goal of nuclear energy system: effective plutonium consumption versus effective natural uranium and thorium consumption. Several options of sodium cooled fast reactor are considered to provide increased breeding and thorium involving into nuclear energy system.

Kurzfassung

In diesem Beitrag werden die Unterschiede zwischen den zwei Herangehensweisen zum Erreichen des Hauptziels des Brennstoffkreislaufs herausgearbeitet: Verbrauch von Plutonium oder Verbrauch von natürlichem Uran und Thorium. Dazu werden verschiedene unterstützende Optionen wie der Einsatz von natriumgekühlten schnellen Reaktoren durch verbessertes Brüten und die Berücksichtigung von Thorium betrachtet.


* E-mail:

References

1 Physics and Safety of Transmutation Systems. A Status Report. Nuclear Energy Agency (NEA), Paris, 2006. No. 6090Search in Google Scholar

2 Shropshire, D. E.; Williams, K. A.; Boore, W. B. et al.: Advanced Fuel Cycle Cost Basis. Idaho National Laboratory (INL), Idaho, March 2008. – INL/EXT-07-12107 Rev. 1Search in Google Scholar

3 Alekseev, P. N.; Balanin, A. L.; Blandinsky, V. Yu. et al.: Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle. Kerntechnik80 (2015) 38910.3139/124.110514Search in Google Scholar

4 Nuclear Energy Development in the 21st Century: Global Scenarios and Regional Trends. International Atomic Energy Agency (IAEA), Vienna, 2010. (IAEA Nuclear Energy Series No. NP-T-1.8)Search in Google Scholar

5 Waltar, Alan E.; Todd, Donald R.; Tsvetkov, Pavel V.: Fast Spectrum Reactors. Springer, 201210.1007/978-1-4419-9572-8Search in Google Scholar

Received: 2016-01-31
Published Online: 2016-08-10
Published in Print: 2016-08-26

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2015
  7. Technical Contributions/Fachbeiträge
  8. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes
  9. Xenon instability study of large core Monte Carlo calculations
  10. Error detection in core loading in the condition of asymmetrical distribution of power
  11. New models in VERONA 7.0 system
  12. Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants
  13. Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations
  14. Aspects of using a best-estimate approach for VVER safety analysis in reactivity initiated accidents
  15. Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark – re-connection of an isolated loop
  16. Uncertainties of the KIKO3D-ATHLET calculations using the Kalinin-3 benchmark (Phase II) data
  17. Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
  18. Efficient introduction of natural uranium and thorium into nuclear energy system
  19. Economical aspects of multiple plutonium and uranium recycling in VVER reactors
  20. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO
  21. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110708/pdf
Scroll to top button