Home Technology Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod
Article
Licensed
Unlicensed Requires Authentication

Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

  • A. Pazirandeh and A. Hooshyar Mobaraki
Published/Copyright: June 14, 2017
Become an author with De Gruyter Brill

Abstract

The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

Kurzfassung

Der sichere Betrieb von Reaktoren basiert auf Rückmeldungsmodellen. In diesem Beitrag wird versucht, den Einfluss einer ungleichförmigen radialen Temperaturverteilung auf den Temperaturkoeffizienten der Reaktivität der Brennelemente zu diskutieren. Es wird gezeigt, dass die Eigenschaften der Neutronen des Reaktorkerns auf der effektiven Temperatur des Brennstoffs basieren, um die korrekte Rückmeldung der Brennelementtemperatur zu erhalten. Der Wert der in den neutronenphysikalischen Berechnungen verwendeten volumen-gemittelten Temperatur mit Rückmeldungen würde zu einer Unterschätzung des möglichen Ereignisses führen. Es ist deshalb nötig, in den Berechnungen die effektive Temperatur des Brennstoffs zu verwenden, um so die korrekte Berechnung für die Brennstofftemperatur zu erhalten. Änderungen der Brennstofftemperatur in verschiedenen Zonen des Kerns und damit Änderungen des Reaktivitätskoeffizienten sind wichtige Parameter zur Analyse transienter Bedingungen. Der einschränkende Faktor, der die eingesetzte Reaktivität kompensiert, ist der Temperatur-Reaktivitätskoeffizient und der Anteil effektiv verzögerter Neutronen.

References

1 De Kruijf, W. J. M.; Janssen, A. J.: On the definition of the fuel temperature coefficient of reactivity for pin-cell calculations on an infinite lattice. Annals of Nuclear Energy20 (1993) 63964810.1016/0306-4549(93)90031-JSearch in Google Scholar

2 De Kruijf, W. J. M.: Reactor physics analysis of the pin-cell Doppler effect in a thermal nuclear reactor. Thesis, 130 p, ECN-R-94–033, Technical University Delft, Netherlands, (1995)Search in Google Scholar

3 Goltsev, A. O.; Davidenko, V. D.; Tsibulsky, V. F.; Lekomtsev, A.A.: Comments on Computational problems in the calculations of temperatutre effects for heterogenous nuclear reactors unit cells. Annals of Nuclear Energy28 (2001) 38538710.1016/S0306-4549(00)00087-6Search in Google Scholar

4 Goltsev, A. O.; Davidenko, V. D.; Tsibulsky, V. F.; Lekomtsev, A. A.: The influence of a non-uniform radial temperature distribution in the fuel on the results of calculation of transients. Annals of Nuclear Energy30 (2003) 1135115310.1016/S0306-4549(03)00042-2Search in Google Scholar

5 Mosteller, R. D.; Holly, J. T.; Mott, L. A.: Benchmark Calculations for the Doppler Coefficient of Reactivity in Mixed- Oxcide fuel Advances in Mathematics, Computations, Reactor Physics, USA, Pittsburgh, (1991)Search in Google Scholar

6 Matsumoto, H.; Ouisloumen, M.; Takeda, T.: Spatially dependent self-shielding method with temperature distribution for the two-dimensional transport code PARAGON, Journal of Nuclear Science and Technology43 (2006) 131110.1080/18811248.2006.9711225Search in Google Scholar

7 Lamarsh, J. R.; Baratta, A.: Introduction to Nuclear Engineering, Addison-Wesley Publishing Co., (2007)Search in Google Scholar

8 Todreas, N.; Kazimi, M.: Nuclear Systems Thermal Hydraulic Fundamentals. Volume 1, 2nd Edition, (2011)Search in Google Scholar

9 GasparJr., J. C. A.; Moreira, M. L.; DeSampaio, P. A. B.: Temperature Distribution on Fuel Rods: A Study on the Effect of Eccentricity in the Position of UO2 Pellets. 20th International Conference Nuclear Energy for New Europe, Bovec/Slovenic/Sep.12–2015Search in Google Scholar

Received: 2016-08-08
Published Online: 2017-06-14
Published in Print: 2017-07-26

© 2017, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110662/pdf
Scroll to top button