Home Technology Nuclear characteristics of epoxy resin as a space environment neutron shielding
Article
Licensed
Unlicensed Requires Authentication

Nuclear characteristics of epoxy resin as a space environment neutron shielding

  • R. Adeli , S. P. Shirmardi , S. Mazinani and S. J. Ahmadi
Published/Copyright: April 18, 2017
Become an author with De Gruyter Brill

Abstract

In recent years many investigations have been done for choosing applicable light neutron shielding in space environmental applications. In this study, we have considered the neutron radiation-protective characteristics of neat epoxy resin, a thermoplastic polymer material and have compared it with various candidate materials in neutron radiation protection such as Al 6061 alloy and Polyethylene. The aim of this investigation is the effect of type of moderator for fast neutron, notwithstanding neutron absorbers fillers. The nuclear interactions and the effective dose at shields have been studied with the Monte Carlo N-Particle transport code (MCNP), using variance reductions to reduce the relative error. Among the candidates, polymer matrix showed a better performance in attenuating fast neutrons and caused a lower neutron and secondary photon effective dose.

Kurzfassung

In den vergangenen Jahren wurden viele Untersuchungen durchgeführt in Bezug auf geeignete leichte Materialien zur Neutronenabschirmung im Weltraum. In der vorliegenden Studie wurden die Schutzeigenschaften von Epoxidharz, einem thermoplastischen Kunststoffmaterial, in Bezug auf Neutronen untersucht und verglichen mit verschiedenen anderen in Frage kommenden Materialien wie z. B. die Aluminiumlegierung AW-6061 und Polyäthylen. Die Kernwechselwirkungen und die effektive Dosis an den Abschirmungen wurden mit Hilfe des Monte-Carlo-Neutronentransport-Codes (MCNP) untersucht, unter Anwendung von Varianzreduktionen zur Effizienzsteigerung der Simulation. Unter den in Frage kommenden Materialien zeigt die Polymermatrix ein besseres Verhalten bei der Schwächung der Neutronen und führte zu einer niedrigeren effektiven Dosis durch Neutronen und Sekundärphotonen.


* Corresponding author:

References

1 Lee, M. K. et al.: Properties of B4C–PbO–Al(OH)3-epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields. Journal of Nuclear Materials445 (2014) 637110.1016/j.jnucmat.2013.10.051Search in Google Scholar

2 Okuno, K.: Neutron Shielding Material Based oncolemanite and Epoxy Resin. Radiation Protection Dosimetry115 (2005) 25826110.1093/rpd/nci154Search in Google Scholar

3 Robert, C.; Singleterry, J.; Thibeault, S. A.: Materials for Low-Energy Neutron Radiation Shielding. NASA/TP-2000–210281, 1–14 (2000)Search in Google Scholar

4 Kim, J. W. et al.: Polymer Nanocomposite Based Multi-layer Neutron Shields. Nuclear Physics and Radiation Physics (S73)42 (2010)Search in Google Scholar

5 Harrison, C. et al.: Polyethylene/Boron Nitride Composites for Space Radiation Shielding. Journal of Applied Polymer Science109 (2008) 2529253910.1002/app.27949Search in Google Scholar

6 Chilton, B.; ShultisK.J.; Faw, R. E.: Principles of Radiation Shielding, Prentice-Hall, Inc: New Jersey, (1984)Search in Google Scholar

7 Cember, H.; Johnson, T. E.: Introduction to Health Physics. Fourth Edition, McGraw-Hill Companies, (2009)Search in Google Scholar

8 Martin, J. E.: Physics for Radiation Protection. A Handbook., Wiley-Interscience Publication, John Wiley & Sons Inc. (2006) 10.1002/9783527618798Search in Google Scholar

9 Firestone, R. B.: Database for Prompt Gamma-ray Neutron Activation Analysis, (2014)Search in Google Scholar

10 Wang, R. M.; Zheng, S. R.; Zheng, Y. P.: Polymer Matrix Composites and Technology. Woodhead Publishing Limited (Science Press), Cambridge, UK, (2011) 10.1533/9780857092229Search in Google Scholar

11 Shultis, J. K., Faw, R. E.: An MCNP Primer. Kansas State University, Department of Mechanical and Nuclear Engineering (2010)Search in Google Scholar

12 Lorch, E. A.: Neutron Spectra of 241Am/B, 241Am/Be, 241Am/F, 242Cm/Be, 238Pu/13C and 252Cf Isotopic Neutron Sources. International Journal of Applied Radiation and Isotopes24 (1973) 58559110.1016/0020-708X(73)90127-0Search in Google Scholar

13 Booth, T. E.: A Sample Problem for Variance Reduction in MCNP, Los Alamos National Laboratory, LA-10363-MS, (1985)Search in Google Scholar

14 Attix, F. H.: Introduction to Radiological Physics and Radiation Dosimetry, John Wiley & Sons, Wiley, New York, (1986) 10.1002/9783527617135Search in Google Scholar

15 Knoll, G. F.: Radiation Detection and Measurements, John Wiley & Sons, Wiley, New York, (2000)Search in Google Scholar

16 Shultis, J. K.; Faw, R. E.: Radiation Shielding. Prentice Hall PTR (1996)Search in Google Scholar

17 International Committee on Radiological Protection (ICRP): Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Report 74, Annals of the ICRP, number 3, Pergamon Press, Oxford, England, 1997Search in Google Scholar

18 International Commission on Radiation Units and Measurements (ICRU): Conversion coefficients for use in radiological protection against external radiation. ICRU Report 57, Bethesda, Maryland, 1998Search in Google Scholar

Received: 2016-01-13
Published Online: 2017-04-18
Published in Print: 2017-03-16

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. CANDU pressure tube leak detection by annulus gas dew point measurement: a critical review
  7. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant
  8. 10.3139/124.110675
  9. Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor
  10. Simulation of protected and unprotected loss of flow transients in a WWER-1000 reactor based on the Drift-Flux Model
  11. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment
  12. Analysis of the optimal fuel composition for the Indonesian experimental power reactor
  13. Radiogenic lead from poly-metallic thorium ores as a valuable material for advanced nuclear facilities
  14. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident
  15. Font Attributes based Text Steganographic algorithm (FATS) for communicating images: A nuclear power plant perspective
  16. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor
  17. Nuclear characteristics of epoxy resin as a space environment neutron shielding
  18. Exact solution of the neutron transport equation in spherical geometry
  19. Technical Notes/Technische Mitteilungen
  20. Determination of self-attenuation correction factor for lichen samples by using gamma-ray spectrometry
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110603/pdf
Scroll to top button