Home Technology Development and verification of new nodal methods in the KIKO3DMG code
Article
Licensed
Unlicensed Requires Authentication

Development and verification of new nodal methods in the KIKO3DMG code

  • I. Pataki and A. Keresztúri
Published/Copyright: August 21, 2014
Become an author with De Gruyter Brill

Abstract

The paper reports about the development and verification of the new nodal methods to be used in the KIKO3DMG code. Two classes of the new methods are presented. The first class makes the treatment of the heterogeneities possible inside the assemblies while the extent of the crucial approximations applied on the node boundaries is more considerable in comparison to those in case of the second type. The nodal methods were validated by two VVER reference problems found in the AER benchmark book (aerbench.kfki.hu/aerbench). The AER-2 and FCM-101 benchmarks correspond to the VVER-440 and VVER-1000 geometry, respectively. It was found that the differences between the converged and the reference solutions are negligible from the practical point of view. The performance characteristics concerning the accuracy and the necessary CPU time – both depending on the mesh refinement – were also compared.

Kurzfassung

In diesem Beitrag wird die Entwicklung und Verifikation neuer nodaler Methoden des Programms KIKO3DMG vorgestellt. Dabei werden zwei Klassen beschrieben: Bei der ersten Methode können die Heterogenitäten innerhalb der Brennelemente berücksichtigt werden, während gleichzeitig die notwendigen Näherungen an den Rändern größer sind im Vergleich zur zweiten Klasse. Zur Validierung wurden zwei WWER Referenzfälle (AER-2 für WWER-440 und FCM-101 für WWER-1000) aus den Definitionen der AER Benchmarks herangezogen. Dabei zeigte sich, dass die Unterschiede zwischen den neuen konvergierenden Lösungen und den Referenzlösungen vernachlässigt werden können. Zusätzlich wurde noch die Rechenleistung verglichen hinsichtlich der Genauigkeit und der benötigten CPU-Zeit – beide hängen vom Detaillierungsgrad der Nodalisierung ab.

References

1 Makai, M.: HEXAN – A 2D Analytic Nodal Code in Hexagonal Geometry for IBM Computers. Trans. Am. Nucl. Soc.41 (1982) 314Search in Google Scholar

2 Woo, S. W.; Cho, N. Z.: The analytic function expansion nodal method refined with transverse gradient basis functions and interface flux moments. Nuclear Science and Engineering139 (2001) 15617310.13182/NSE01-A2229Search in Google Scholar

3 Grundmann, U.; Mittag, S.; Rohde, U.: DYN3D Version 3.1, Code for Calculation of Transients in Light Water Reactors (LWR) with Hexagonal or Quadratic Fuel Elements (Draft). Forschungszentrum Rossendorf, March 2006Search in Google Scholar

4 Cho, N. Z.; LeeJ.: Analytic function expansion nodal (AFEN) method in hexagonal-Z three-dimensional geometry for neutron diffusion calculation. Journal of Nuclear Science and Technology43 (2006) 1320132610.1080/18811248.2006.9711226Search in Google Scholar

5 ChristoskovI.; PetkovP. T.: A development of the HEXNEM nodal expansion method. Annals of Nuclear Energy51 (2013) 23523910.1016/j.anucene.2012.06.036Search in Google Scholar

6 Keresztúri, A.; Hegyi, Gy.; Maráczy, Cs.; Panka, I.; Telbisz, M.; TrosztelI.; Hegedűs, Cs.: Development and validation of the three-dimensional dynamic code – KIKO3D. Annals of Nuclear Energy30 (2003) 9312010.1016/S0306-4549(02)00043-9Search in Google Scholar

7 PatakiI.; KeresztúriA.: Calculation of the second AER kinetic benchmark problem by using a new nodal method. Proceeding of the 22nd AER Symposium, Pruhonice (ISBN:978-963-508-626-9) Vol. II. (2012) 775784Search in Google Scholar

8 GrundmanU.; Rohde, U.: Definition of the second hexagonal kinetic benchmark of AER. Proceedings of the 3rd Symposium of AER, 1993, pp. 325332, KFKI Atomenergia Press, Budapest, 1993Search in Google Scholar

9 Schulz, G.: Solutions of a 3D VVER-1000 benchmark. In: Proc. 6-th Symposium of AER on VVER Reactor Physics and Safety, Kirkkonummi, Finland, September 1996Search in Google Scholar

10 Maráczy, Cs.; Kolev, N. P.; Magnaud, C.; Lenain, R.: Test ID: AER-FCM-001. 1999, <http://www.ftp.kfki.hu/local/aerbench/FCM001.doc>Search in Google Scholar

11 Lautard, J.J.; Loubiere, S.; Fedon-Magnaud, C.: CRONOS: a modular computational system for neutronic core calculations. In: IAEA Specialist Meeting on Advanced Calculation Methods for Power Reactors, Cadarache, France, September 10–14, 1990Search in Google Scholar

12 KolevN.P.; Lenain, R.; Fedon-Magnaud, C.: Finite element solutions of the AER-2 rod ejection benchmark by CRONOS. Proceedings of the 11th Symposium of AER, 2001, pp. 395411, KFKI Atomenergia Press, Budapest, 2001Search in Google Scholar

13 Kolev, N.P., Lenain, R., Magnaud, C.: AER Benchmark Specification Sheet – Test ID: AER-FCM-101, 1999, <http://www.ftp.kfki.hu/local/aerbench/FCM101.doc>Search in Google Scholar

Received: 2014-01-31
Published Online: 2014-08-21
Published in Print: 2014-08-28

© 2014, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110451/pdf
Scroll to top button