Analyses in regulatory practice
-
F. Blömeling
and A. Schaffrath
Abstract
The application of numerical codes is well established in the regulatory practice for nuclear power plants. Therefore, requirements for computer-aided analyses can be found in different places of the nuclear technical rules and standards. These requirements also apply for CFD analyses which reached more and more the spot light of research activities and component design, because computing capacities increased significantly in the past years. Hence, the actual status of CFD as a possible design and analysis tool in the supervising process of nuclear power plants will be discussed in this paper. The focus is set on the prerequisites which have to be fulfilled by codes and in particular by the user who wants to use CFD methods. The prerequisites will be derived directly from the existing German technical rules and standards. Finally, two examples for typical CFD applications for nuclear safety analyses are given.
Kurzfassung
Numerische Software wird in kerntechnischen Aufsichts- und Genehmigungsverfahren bei vielfältigen Fragestellungen aus den Fachgebieten Neutronenphysik, Strukturmechanik, Thermohydraulik etc. eingesetzt. Mithilfe der Software erfolgt u.a. eine Dimensionierung und Auslegung von Systemen bzw. Komponenten sowie die Simulation von Transienten und Störfällen. In der Kerntechnik werden an derartige Analysen hohe Anforderungen gestellt. Computational Fluid Dynamik (CFD) Codes wurden für die Berechnung mehrdimensionaler Strömungsvorgänge, wie sie im Reaktorkühlsystem oder im Containment auftreten, entwickelt. Für ausgewählte einphasige Strömungsphänomene liegen inzwischen umfangreiche Erfahrungen vor. Aktuell besteht ein Entwicklungs- und Validierungsbedarf bezüglich der Simulation von Mehrphasen- und Mehrkomponentenströmungen. Es wird vorgestellt, welche Möglichkeiten für CFD-Analysen heutzutage in kerntechnischen Aufsichts- und Genehmigungsverfahren bestehen. Dazu werden die grundsätzlichen Anforderungen an numerische Software diskutiert. Insbesondere wird dargestellt, welche Ansprüche das kerntechnische Regelwerk an rechnerische Analysen stellt. Abschließend werden zwei Beispiele für die Anwendung von CFD-Analysen bei kerntechnischen Fragestellungen vorgestellt.
References
1 ANSYS Germany GmbH: ANSYS CFX Users Manual. www.ansys-germany.comSearch in Google Scholar
2 ANSYS Structural Mechanics. http://www.ansys.com/Products/Simulation+Technology/Structural+MechanicsSearch in Google Scholar
3 Bundesminister des Inneren: Gesetz über die friedliche Nutzung der Kernenergie und den Schutz gegen ihre Gefahren (Atomgesetz). Federal law from 15th July 1985, Bonn, Version from 08th December 2010Search in Google Scholar
4 Federal Ministry for the Environment, Nature Conservation and Nuclear Safety: Safety Requirements for Nuclear Power Plants, from 22th November 2012, Az. RS I 5-13303/01Search in Google Scholar
5 Deutsches Institut für Normung: DIN EN ISO 9001:2008, Chapter 7.6: Lenkung von Überwachungs- und MessmittelnSearch in Google Scholar
6 Gesellschaft für Anlagen- und Reaktorsicherheit mbH: Athlet User's Manual Mod. 2.0 Cycle A. GRS-P-1, Vol. 1, Rev. 3, Garching, Okt. 2013Search in Google Scholar
7 International Atomic Energy Agency: Accident Analysis for Nuclear Power Plants. Safety Report Series No. 23, Vienna 2002Search in Google Scholar
8 Nuclear Safety Standards Commission (KTA): Components of the Reactor Coolant Pressure Boundary of Light Water Reactors; Part 2: Design and Analysis. Safety standard 3201.2, version from June 1996Search in Google Scholar
9 Nuclear Energy Agency: Best Practice Guidelines for the use of CFD in Nuclear Reactor. Safety Applications Committee on the Safety of Nuclear Installations, NEA/CSI/R(2007)5, 15th May 2007Search in Google Scholar
10 Reactor Safety Commission (RSK): RSK Guidelines for Pressurized Water Reactors, Version from 15th November 1996Search in Google Scholar
11 Reactor Safety Commission (RSK): Anforderungen an die Nachweisführung bei Kühlmittelverluststörfall-Analysen, RSK-Empfehlung. 385. RSK meeting on 20th and 21th July 2005, Version 04.2006Search in Google Scholar
12 S-RELAP5 Code Manual, Technical Report KWU NDS1/95/E1510, Siemens, Dec. 1995Search in Google Scholar
13 CASMO-5/CASMO-5 M A fuel assembly burnup program. SSP-08/405, Studsvik Scandpower, Inc.Search in Google Scholar
14 SIMULATE-3 Methodology – Advanced Three-Dimensional Two-Group. Reactor Analysis Code, STUDSVIK/SOA-95/18, Studsvik AB Inc., Studsvik of AmericaSearch in Google Scholar
15 T.Neuhaus; A.Schaffrath: The Pressure Surge Computer Code DYVRO mod. 3: Modelling and Validation. The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13), Kanazawa City, Ishikawa Prefecture, Japan, September 27th – October 2nd, 2009Search in Google Scholar
16 U.S. Nuclear Regulatory Commission: Best Estimate Calculations of Emergency Core Cooling System Performance, May 1989Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors: a review – Part II: R&D necessities and development across the world
- Analysis of radwaste management alternatives during dismantling of Ignalina NPP systems with low level contamination
- Calculation of excitation functions for the production of Cu and Co medical isotopes
- Reliability assessment of the passive heat removal system of the VVER-1000 reactor at Kudankulam NPP
- Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code
- Steam drum level control studies of a natural circulation multi loop reactor
- Analyses in regulatory practice
- Technical Notes/Technische Mitteilungen
- Installation and measurement capacity of 3 × 592 GBq 241Am–Be neutron irradiation cell
- Calculation of the critical thickness for one-speed neutrons in a reflected slab with backward and forward scattering using modified TN method
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors: a review – Part II: R&D necessities and development across the world
- Analysis of radwaste management alternatives during dismantling of Ignalina NPP systems with low level contamination
- Calculation of excitation functions for the production of Cu and Co medical isotopes
- Reliability assessment of the passive heat removal system of the VVER-1000 reactor at Kudankulam NPP
- Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code
- Steam drum level control studies of a natural circulation multi loop reactor
- Analyses in regulatory practice
- Technical Notes/Technische Mitteilungen
- Installation and measurement capacity of 3 × 592 GBq 241Am–Be neutron irradiation cell
- Calculation of the critical thickness for one-speed neutrons in a reflected slab with backward and forward scattering using modified TN method