Home Technology Effectiveness of radial flow on rewetting of AHWR fuel cluster
Article
Licensed
Unlicensed Requires Authentication

Effectiveness of radial flow on rewetting of AHWR fuel cluster

  • M. Kumar , D. Mukhopadhyay , A. K. Ghosh and R. Kumar
Published/Copyright: March 12, 2014
Become an author with De Gruyter Brill

Abstract

Rewetting of a hot surface is the process of establishing direct liquid contact with a large portion of the surface whose initial temperature exceeds that required to maintain film boiling for prescribed surface and flow conditions. The Advanced Heavy water Reactor (AHWR) is a natural circulation vertical pressure tube type boiling light water cooled and heavy water moderated reactor. In case of a loss of coolant accident, the clad surface temperature goes up very high and comes down due to coolant injection from the Emergency Core Coolant System (ECCS). The rewetting takes place in Boiling Water Reactors (BWR) due to top flooding and Pressurised Water Reactors (PWR) due to bottom flooding. But in AHWR, the emergency coolant enters into the reactor core in radial direction and after this, cross flow phenomenon takes place from one fuel pin ring to next. The study is being carried out on the effect of cross flow on rewetting of AHWR fuel bundle. This paper will discuss the modeling of the experimental setup having pressure tube, fuel cluster, steam generator, accumulator etc and study the effect of radial flow on rewetting of fuel pins. An analysis of the model, considering with and without cross flow, has been carried out and shows that the pick fuel temperature is sensitive to cross flow. The thermal hydraulic safety analysis code Relap5/3.2 is being used for modeling of experimental setup for rewetting study.

Kurzfassung

Der fortgeschrittene Schwerwasserreaktor (AHWR) ist ein Leichtwasser gekühlter, Schwerwasser moderierter Reaktor mit Naturumlauf. Im Falle eines Kühlmittelverlustunfalls steigt die Temperatur der Brennstoffhülle sehr hoch an und sinkt wieder nach einer Kühlmittelinjektion vom Notfallkühlsystem (ECCS). Die Wiederbenetzung findet bei Siedewasserreaktoren (BWR) durch fluten von oben statt, bei Druckwasserreaktoren (PWR) durch fluten von unten. Beim AHWR dagegen dringt das Notfallkühlmittel in radialer Richtung in den Reaktorkern ein. Danach kommt es zu Querströmungsphänomenen von einem Brennstab zum anderen. In der vorliegenden Studie wurde die Wirkung der Querströmung auf die Wiederbenetzung des AHWR-Brennelementbündels untersucht. Ein Experiment zur Untersuchung der Physik des Wiederbenetzungsverhaltens der Brennelementbündel des AHWR wurde konzipiert. Dabei wird die Modellierung der experimentellen Anordnung Druckröhren, Brennelementbündel, Dampferzeuger, Akkumulator, etc. diskutiert und die Wirkungsweise der radialen Strömung auf die Wiederbenetzung der Brennstäbe untersucht. Eine Analyse des Modells wurde sowohl mit wie auch ohne Querströmung durchgeführt und zeigt, dass die Temperatur der Brennelemente empfindlich auf Querströmungen reagiert. Der thermohydraulische Sicherheitsanalyse-Code Relap5/3.2 wurde für die Modellierung der experimentellen Anordnung und die Untersuchung der Wiederbenetzung verwendet.


* Corresponding author: E-mail: Tel.: 91-22-25593549, Fax: 91-22-25505151

References

1 Yamanouchi, A.: Effect of core spray cooling in transient state after loss of coolant accident. J. Nucl. Sci. Tech.5 (1968) 547558 DOI: http://dx.doi.org/10.1080/18811248.1968.9732504Search in Google Scholar

2 Duffey, R. B.; Porthouse, D. T. C.: The physics of rewetting in water reactor emergency core cooling. Nucl. Eng. Des.25 (1973) 379394 DOI: http://dx.doi.org/10.1016/0029-5493(73)90033-2Search in Google Scholar

3 Coney, M. W. E.: Calculations on the rewetting of hot Surfaces. Nucl. Eng. Des.31 (1974) 246259 DOI: http://dx.doi.org/10.1016/0029-5493(75)90145-4Search in Google Scholar

4 Duffey, R. B.; Porthouse, D. T. C.: Experiments on the cooling of high temperature surfaces by water jets and drops. Report No. RD/B/N2386, Berkeley Nuclear laboratories, August 1972Search in Google Scholar

5 Tien, C. L.; Yao, L. S.: Analysis of conduction-controlled rewetting of a vertical surface. ASME J. Heat Transfer97 (1975) 161165 DOI: http://dx.doi.org/10.1115/1.3450335Search in Google Scholar

6 Blair, J. M.: An analytical solution to a two-dimensional model of the rewetting of a hot dry rod, Nucl. Eng. Des.32 (1975) 159170 DOI: http://dx.doi.org/10.1016/0029-5493(75)90127-2Search in Google Scholar

7 Satapathy, A. K.; Sahoo, R. K.: Analysis of rewetting of an infinite tube by Numerical Fourier Inversion. Int. Commun. Heat Mass Transfer5 (2002) 279288. DOI: http://dx.doi.org/10.1016/S0735-1933(02)00318-4Search in Google Scholar

8 Castiglia, F.; Oliveri, E.; Taibi, S.; Vella, G.: Procedure for correlating experimental and theoretical results in the rewetting of hot surfaces. Heat Technol.5 (1987) 8299Search in Google Scholar

9 Thompson, T. S.: An analysis of the wet-side heat transfer coefficient during rewetting of a hot dry patch. Nucl. Eng. Des.22 (1972) 212224 DOI: http://dx.doi.org/10.1016/0029-5493(72)90163-XSearch in Google Scholar

10 Raj, V. V.; Date, A. W.: Analysis of conduction controlled rewetting of hot surfaces based on two region model. In: Proceedings of 8th International Heat transfer Conference, San Francisco, California, USA, 1987–1992.Search in Google Scholar

11 Eckert, E. R. G.; Drake, R. M.: Heat and Mass Transfer. Second Ed., McGraw Hill, New York, 1959, p. 44Search in Google Scholar

12 Goodman, T. R.: The heat balance integral and its application to problems involving a change of phase. ASME J. Heat Transfer80 (1958) 335342Search in Google Scholar

13 Patil, N. D.; Das, P. K.; Bhattacharyya, S.; Sahu, S. K.: An experimental assessment of cooling of a 54-rod bundle by in-bundle injection. Nuclear Engineering and Design250 (2012) 500511 DOI: http://dx.doi.org/10.1016/j.nucengdes.2012.05.017Search in Google Scholar

14 Sinha, R. K.; Kakodkar, A.: Design and development of the AHWR – the Indian thorium fuelled innovative nuclear reactor. Nuclear Engineering and Design236 (2006) 683700 DOI: http://dx.doi.org/10.1016/j.nucengdes.2005.09.026Search in Google Scholar

15 Tyagi, J.; Kumar, M.; Lele, H. G.; Munshi, P.: Thermal hydraulic analysis of the AHWR – The Indian thorium fuelled innovative nuclear reactor. Nuclear Engineer and design262 (2013) 212810.1016/j.nucengdes.2013.03.032Search in Google Scholar

16 Tyagi, J. P.; Kumar, M.; Lele, H. G.; Munshi, P.: Large break LOCA analysis of a natural circulation reactor. In: Transactions of ANS Summer Meeting, San Diego, pp. 631632, 2010Search in Google Scholar

17 Fletcher, C. D.; Schultz, R. R.: RELAP5/MOD3.2 Code Manual Idaho National Engineering Laboratory, Idaho Falls, Idaho, 1995Search in Google Scholar

Received: 2013-11-06
Published Online: 2014-03-12
Published in Print: 2014-03-17

© 2014, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110402/pdf
Scroll to top button