Home Technology Analysis of radwaste management alternatives during dismantling of Ignalina NPP systems with low level contamination
Article
Licensed
Unlicensed Requires Authentication

Analysis of radwaste management alternatives during dismantling of Ignalina NPP systems with low level contamination

  • G. Poskas , P. Poskas and A. Simonis
Published/Copyright: January 8, 2014
Become an author with De Gruyter Brill

Abstract

Ignalina NPP was operating two RBMK-1500 reactors which are under decommissioning now. In this paper, analysis on radwaste management alternatives during the dismantling of systems with low level contamination and different types of components in buildings 117/1 and V1 are presented. After situation analysis and collection of the primary information related to components' physical and radiological characteristics, location and other data, two alternatives for radwaste management during the dismantling were formulated and evaluated: the first one (A1) when the decontamination of the dismantled components is performed (if it is reasonable), and the second one (A2) when no decontamination of the dismantled components is performed and after the dismantling, the components are routed to appropriate waste storage or disposal sites. To select the preferable alternative, MCDA method – AHP (Analytic Hierarchy Process) is applied. Hierarchical lists of decision criteria, necessary for assessment of alternatives performance, are formulated. Quantitative decision criteria values for these alternatives are calculated using software DECRAD, which was developed by Lithuanian Energy Institute Nuclear Engineering Laboratory. Qualitative decision criteria are evaluated using expert judgment. Analysis results show that alternative A1 has a preference against alternative A2.

Kurzfassung

Das Ignalina-Kernkraftwerk hatte zwei RBMK-1500 Reaktoren betrieben, die sich zur Zeit im Rückbau befinden. In diesem Beitrag werden Analysen von Radwaste Management Alternativen während des Rückbaus der Systeme mit niedrigem Kontaminationslevel und verschiedenen Arten von Komponenten in den Gebäuden 117/1 und V1 vorgestellt. Nach einer Analyse der Situation und der Sammlung primärer Informationen in Bezug auf die physikalischen und radiologischen Eigenschaften der Komponenten, der Standorte und weiteren Daten, wurden zwei Alternativen für das Radwaste Management während des Rückbaus formuliert und bewertet: die erste Option (A1), wenn eine Dekontamination der demontierten Komponenten durchgeführt wird und die zweite Option (A2), wenn keine Dekontamination der demontierten Komponenten durchgeführt wird und die Komponenten nach der Demontage zu geeigneten Deponien und Lagerplätzen weitergeleitet werden. Zur Auswahl der bevorzugten Alternative wurde die MCDA Methode – AHP (Analytic Hierarchy Process) angewendet. Dabei werden hierarchisch angeordnete Listen mit Entscheidungskriterien formuliert. Für beide Alternativen wurden Werte für die Entscheidungskriterien mit Hilfe der vom Lithuanian Energy Institute Nuclear Engineering Laboratory entwickelten Software DECRAD berechnet. Qualitative Entscheidungskriterien werden nach Sachverständigenurteil bewertet. Die Ergebnisse der Analyse zeigen, dass die Alternative A1 gegenüber der Alternative A2 bevorzugt wird.


* Corresponding author: Tel.: +37037401891, Fax: +37037351271, E-mail:

References

1 UNEP Year Book 2012: Emerging issues in our global environment, 2012Search in Google Scholar

2 INTERNATIONAL ATOMIC ENERGY AGENCY, Innovative and Adaptive Technologies in Decommissioning of Nuclear Facilities, IAEA-TECDOC- 1602, IAEA, Vienna (2008)Search in Google Scholar

3 INTERNATIONAL ATOMIC ENERGY AGENCY, Selection of Decommissioning Strategies: Issues and Factors, IAEA-TECDOC-1478, IAEA, Vienna (2005)Search in Google Scholar

4 INTERNATIONAL ATOMIC ENERGY AGENCY, Organization and Management for Decommissioning of Large Nuclear Facilities, IAEA-TRS-399, IAEA, Vienna (2000)Search in Google Scholar

5 V.Daniska; V.Necas: Modeling of the decommissioning process of nuclear installations. Journal of Electrical Engineering51 (2000) 156167Search in Google Scholar

6 M.Laraia (Ed.): Nuclear decommissioning: Planning, execution and international experience. Woodhead Publishing Series in Energy36 (2012) 824Search in Google Scholar

7 Siempelkamp NiS Ingenieure mbH: CORA-CALCOM. Brochure: http://www.siempelkamp-nis.com/fileadmin/pdf/en/Cora_Calcom_GB_0408.pdfSearch in Google Scholar

8 Y.Iguchi; Y.Kanehira et al.: Development of decommissioning engineering support system (DEXUS) of Fugen nuclear power station. Journal of Nuclear Science and Technology41 (2004) 36737510.1080/18811248.2004.9715497Search in Google Scholar

9 A.Simonis; A.Sirvydas; G.Poskas: The software DECRAD validation report, TA-14-13.10. Lithuanian Energy Institute, Nuclear Engineering Laboratory (2010)Search in Google Scholar

10 T. L.Saaty: Fundamentals of decision-making and priority theory with the AHP. RWS Publications, Pittsburg, PA, USA (1994)Search in Google Scholar

11 Clearance Levels of Radionuclides, Conditions of Reuse of Materials and Disposal of Waste – LAND 34-2008, Minister of Environment Order No. D1-687 of 24 December 2008. State Journal, 2009, No. 1–11Search in Google Scholar

12 Regulation on Pre-Disposal Management of Radioactive Waste at Nuclear Power Plant VDRA-01-2001. Approved by the Order No. 38 of the Head of VATESI dated July 27, 2001. State Journal, 2001, No. 67-2467Search in Google Scholar

Received: 2013-8-22
Published Online: 2014-01-08
Published in Print: 2013-12-19

© 2013, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110396/pdf
Scroll to top button