Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method
-
A. Abedini
, F. Larki , E. Saion and M. Noroozi
Abstract
Cu–Al bimetallic nanoparticles were synthesized by gamma irradiation technique in aqueous solutions containing metal chlorides as precursors, polyvinyl alcohol (PVA) as a capping agent, isopropanol as a radical scavenger, and distilled water as a solvent. The Cu–Al bimetallic nanoparticles were characterized by transmission electron microscopy (TEM), UV-visible absorption spectrometry, powder X-ray diffractometer (XRD), and Energy-dispersive X-ray spectroscopy (EDX). The TEM, XRD, EDX, and absorption analyses confirmed the formation of core-shell structure of Cu–Al bimetallic nanoparticles at lower Cu2+/Al3+ mole ratio, and the formation of Cu–Al alloy nanoparticles at higher Cu2+/Al3+ mole ratio. The TEM analysis for particle size and size distribution revealed that the average particle size of Cu–Al bimetallic nanoparticles decreased with the increase of absorbed dose. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation.
Kurzfassung
Cu–Al-bimetallische Nanopartikel wurden synthetisiert mit Hilfe eines Gammabestrahlungsverfahrens in wässriger Lösung, die Metallchlorid als Precursor enthielt, Polyvinylalkohol (PVA) als sogenanntes Capping Agent, Isopropanol als Radikalfänger, und destilliertes Wasser als Lösungsmittel. Die Cu–Al bimetallischen Nanopartikel wurden charakterisiert mit Hilfe der Transmissionselektronenmikroskopie (TEM), der Absorptionsspektrometrie im sichtbaren UV-Bereich, mit dem Pulver-Röntgendiffraktometer (XRD), und der Energy-dispersiven Röntgenspektroskopie (EDX). TEM, XRD, EDX, und die Absorptionsanalyse bestätigen die Bildung einer Kern-Schale-Struktur von Cu–Al-bimetallischen Nanopartikeln bei niedrigeren Cu2+/Al3+ Molverhältnissen, und die Bildung von Cu–Al-Legierung Nanopartikeln bei höheren Cu2+/Al3+ Molverhältnissen. Die TEM Analyse für Partikelgröße und -größenverteilung zeigte, dass die durchschnittliche Partikelgröße von Cu–Al-bimetallischen Nanopartikeln sinkt mit steigender Energiedosis. Dies könnte erklärt werden mit der Konkurrenz zwischen Kernbildung und Verdichtung bei der Bildung von metallischen Nanopartikeln unter Bestrahlung.
References
1 Ryu, H.; Bartwal, K.: An efficient co-doping of Eu and Er in CaAl2O4 aluminate phosphor. Physica B: Condensed Matter403 (2008) 3195–3198Search in Google Scholar
2 Lv, W.; et al.: Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method. J. Alloy Compd.479 (2009) 480–483Search in Google Scholar
3 Denisova, J.; et al.: An impedance study of complex Al/Cu-Al2O3 electrode. 2011: IOP Publishing.10.1088/1757-899X/23/1/012040Search in Google Scholar
4 Yanyan, J.; et al.: CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. J. Sol-Gel Sci. Technol.42 (2007) 41–45Search in Google Scholar
5 Salavati-Niasari, M.; Davar, F.; Farhadi, M.: Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol-gel method. J. Sol-Gel Sci. Technol.51 (2009) 48–52Search in Google Scholar
6 Abedini, A.; Saion, E.; Larki, F.: Radiation-induced reduction of mixed copper and aluminum ionic aqueous solution. J. Radioanal. Nucl. Chem.292 (2012) 983–987Search in Google Scholar
7 Zhou, R.; et al.: Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation. Nucl. Instr. and Meth. in Phys. Res. B266 (2008) 599–603Search in Google Scholar
8 Akhavan, A.; et al.: Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chem. Eng. J.159 (2010) 230–235Search in Google Scholar
9 Abedini, A.; et al.: Radiation formation of Al-Ni bimetallic nanoparticles in aqueous system. J. Radioanal. Nucl. Chem. (2012) 1–6Search in Google Scholar
10 Abedini, A.; et al.: Influence of dose and ion concentration on formation of inary Al-Ni alloy nanoclusters. Rad. Phys. Chem.81 (2012) 1653–1658Search in Google Scholar
11 Treguer, M.; et al.: Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. J. Phys. Chem. B102 (1998) 4310–4321Search in Google Scholar
12 Belloni, J.; et al.: Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids. New J. Chem.22 (1998) 1239–1255Search in Google Scholar
13 Zhiqiang, L.; Xiaobin, L.; Zhihong, P.: The Mechanism of Agglomeration and Control in the Process of Ultrafine Powder Prepared by WetChemical Method. CHEMISTRY7 (1999)Search in Google Scholar
14 Mallin, M.P.; Murphy, C.J.: Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett.2 (2002) 1235–1237Search in Google Scholar
15 Khatouri, J.; et al.: Radiation-induced copper aggregates and oligomers. Chem. Phys. Lett.191 (1992) 351–356Search in Google Scholar
16 Song, Y.; et al.: Controlled growth of Cu nanoparticles by a tubular microfluidic reactor. Chem. Eng. J.168 (2011) 477–484Search in Google Scholar
17 Chen, D. H.; Wu, S. H.: Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater12 (2000) 1354–1360Search in Google Scholar
18 Stratakis, E.; et al.: Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Optic. Exp.15 (2009) 12650–12659Search in Google Scholar
19 Saion, E.; Gharibshahi, E.: On the theory of metal nanoparticles based on quantum mechanical calculation. J. Fundam. Sci.7 (2011) 6–11Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Chemistry aspects of the source term formation for a severe accident in a CANDU type reactor
- Analytical study on degraded core quenching
- Experimental investigations on control of flow instability in single-phase natural circulation loop
- Burnup calculations using serpent code in accelerator driven thorium reactors
- Investigation of neutronic effects in structural material of a hybrid reactor by using the MCNPX Monte Carlo transport code
- Nuclear aspects and cyclotron production of the positron emitter 55Co
- Calculation of age-dependent effective doses for external exposure using the MCNP code
- Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method
- A numerical method for resonance integral calculations
- Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry
- Effects on criticality of selected scattering phase functions in neutron transport equation using the Chebyshev approximation
- U1 and P1 approximations to neutron transport equation for diffusion length calculation
- Technical Notes/Technische Mitteilungen
- TN approximation for the critical size of one-speed neutrons in a slab with anisotropic scattering
- Albedo and constant source problems for extremely anisotropic scattering
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Chemistry aspects of the source term formation for a severe accident in a CANDU type reactor
- Analytical study on degraded core quenching
- Experimental investigations on control of flow instability in single-phase natural circulation loop
- Burnup calculations using serpent code in accelerator driven thorium reactors
- Investigation of neutronic effects in structural material of a hybrid reactor by using the MCNPX Monte Carlo transport code
- Nuclear aspects and cyclotron production of the positron emitter 55Co
- Calculation of age-dependent effective doses for external exposure using the MCNP code
- Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method
- A numerical method for resonance integral calculations
- Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry
- Effects on criticality of selected scattering phase functions in neutron transport equation using the Chebyshev approximation
- U1 and P1 approximations to neutron transport equation for diffusion length calculation
- Technical Notes/Technische Mitteilungen
- TN approximation for the critical size of one-speed neutrons in a slab with anisotropic scattering
- Albedo and constant source problems for extremely anisotropic scattering