Home Technology Criticality analyses of regions containing uranium in the earth history
Article
Licensed
Unlicensed Requires Authentication

Criticality analyses of regions containing uranium in the earth history

  • M. Ravnik and R. Jeraj
Published/Copyright: May 5, 2013
Become an author with De Gruyter Brill

Abstract

Investigations of necessary conditions for a self-sustained chain reaction in the Earth inner regions hypothetically containing uranium is presented for the time interval from Earth formation to present time. It is determined that criticality was theoretically possible up to 2.5 Ga before present if uranium concentrated in pure form. In the early geological history (4 Ga before present) the self-sustained criticality could occur even if uranium was diluted up to 1: 20 by the average core material or 1: 60 by the average mantle material. If other metallic materials of similar density as uranium (e. g., Au, W) or similar atomic weight (e. g., Th) concentrated from the primordial mixture in equal proportion as uranium, criticality was not possible for any period in Earth history provided that the basic material contained no light nuclides (H, C). Criticality in the Earth inner regions could have established only if uranium concentrated from the basic material more effectively than elements of similar density or atomic number.

Kurzfassung

Untersuchungen der notwendigen Bedingungen für eine selbst-erhaltende Kettenreaktion in Uran-haltigen Regionen im Erdinnern werden vorgestellt für den Zeitraum von der Entstehung der Erde bis heute. Es wurde festgestellt, dass Kritikalität theoretisch möglich war bis 2, 5 Ga vor heute, wenn Uran in reiner Form vorliegt. In der frühen geologischen Geschichte (4 Ga vor heute) konnte die selbst-erhaltende Kettenreaktion sogar dann auftreten, wenn Uran bis zu 1: 20 verdünnt durch das durchschnittliche Erdkernmaterial vorlag oder 1: 60 durch das durchschnittliche Erdmantelmaterial. Wenn andere metallische Materialien ähnlicher Dichte wie Uran (z. B. Au, W) oder mit ähnlichem Atomgewicht (z. B. Th) aus dem primordialen Gemisch in gleichen Anteilen konzentriert vorlagen wie Uran, so war Kritikalität zu keiner Zeit der Erdgeschichte möglich, vorausgesetzt das Grundmaterial enthielt keine leichten Nuklide (H, C). Kritikalität konnte nur entstehen, wenn sich Uran aus dem Grundmaterial effektiver anreicherte als Elemente ähnlicher Dichte oder Atomzahl.


Corresponding author: Matjaz Ravnik, Email:

Dr. Matjaz Ravnik, Reactor Physics Division, Josef Stefan Institute, Ljubljana, Slovenia and Dr. Robert Jeraj, University of Wisconsin - Madison, Madison, WI, USA


References

1 Keil, K.: Mineralogical and chemical relationships among enstatite chondrites. J. Geophys. Res.73 (1968) 6945.10.1029/JB073i022p06945Search in Google Scholar

2 Mason, B.: Geochemistry Part 1, Meteorites, Data of Geochemistry, U.S. Geological Survey Professional Paper 440-B-1 (1979).Search in Google Scholar

3 Dzienowski, A. M.; Andersen, D. A.: Preliminary reference Earth model. Phys. Earth Planet. Inter.25 (1981) 297.10.1016/0031-9201(81)90046-7Search in Google Scholar

4 Jacobs, J. A.: The Earth's Core. Academic Press, London1987.Search in Google Scholar

5 Ringwood, A. E.: Composition and origin of the Earth, In: McElhinnyM. W. (Ed.) The Earth: its Origin, Structure and Evolution. Academic Press (1979) 158.Search in Google Scholar

6 Handbook of Chemistry and Physics. Edition 2001, CRC Press, Inc., Boca Raton, Florida, 2001.Search in Google Scholar

7 Elsasser, W. M.: The Earth's interior and geomagnetism. Revs. Mod. Phys.22 (1950) 1.10.1103/RevModPhys.22.1Search in Google Scholar

8 Ferber, R. C.; Wallace, T. C.; Libby, L. M.: Uranium in the Earth's core. EOS65 (1984) 785.10.1029/EO065i044p00785-01Search in Google Scholar

9 Herndon, J. M.: Nuclear fission reactors as energy sources for the giant outer planets, Naturwissenschaften79 (1992) 7.10.1007/BF01132272Search in Google Scholar

10 Herndon, J. M.: Feasibility of a nuclear fission reactor at the center of the earth as the energy source for the geomagnetic field. J. Geomag. Geoelectr.45 (1993) 423.10.5636/jgg.45.423Search in Google Scholar

11 Briesmeister, J. (Ed.): MCNP – A general Monte Carlo N-particle transport code, Version 4C. Report LA-12625, Los Alamos National Laboratory, Los Alamos, New Mexico, 1999.Search in Google Scholar

12 Garber, D. (Ed.): ENDF/B-V. Report BNL-17541 (ENDF-201), National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY, 1975.Search in Google Scholar

13 Hendrics, J. S.; Frankle, S. C.; Court, J. D.: ENDF/B-VI data for MCNP(TM). Report LA-12891, Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.10.2172/10119302Search in Google Scholar

14 Court, J. D.; Hendrics, J. S.; Frankle, S. C.: MCNP(TM) Validation: Infinite Media Comparisons of ENDF/B-V and ENDF/B-VI. Report LA-12887, Los Alamos National Laboratory, Los Alamos, New Mexico, 1994.10.2172/10119452Search in Google Scholar

15 International Handbook of Evaluated Criticality Safety Benchmark Experiments. (NEA/NSC/DOC, (95)03). Edition 2001, Paris, Nuclear Energy Agency, 2001.Search in Google Scholar

16 Lancelot, J. R.; Vitrac, A.; Allegre, C. J.: Oklo Natural Reactor – Age and Evolution Studies by U-Pb and Rb-Sr Systematics. Earth and planetary science letters25 (1975) 189.10.1016/0012-821X(75)90195-8Search in Google Scholar

17 Okuchi, T.: Hydrogen Partitioning into Molten Iron at High Pressure: Implications for Earth Core. Science278 (1997) 1781.10.1126/science.278.5344.1781Search in Google Scholar PubMed

18 Hummel, H. H.; Okrent, D.: Reactivity coefficients in large fast power reactors. American Nuclear Society, 1978.Search in Google Scholar

19 McDonough, W. F.; Sun, S.-S.: The composition of the Earth. Chemical Geology120 (1995) 223.10.1016/0009-2541(94)00140-4Search in Google Scholar

Received: 2004-10-5
Published Online: 2013-05-05
Published in Print: 2005-05-01

© 2005, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100238/pdf
Scroll to top button