Home Wettability of Phosphonium Benzene Sulfonate on Parafilm
Article
Licensed
Unlicensed Requires Authentication

Wettability of Phosphonium Benzene Sulfonate on Parafilm

Published/Copyright: July 13, 2019
Become an author with De Gruyter Brill

Abstract

The wettability of phosphonium benzene sulfonate on parafilm has been investigated by means of dynamic contact angle measurement. Based on the surface tension data, the spreading coefficient, adhesion tension (γlg cosθ), and adhesion work (WA) were further analyzed. It was revealed that the surface tension and contact angle decreased with the increase in concentration, and remained constant when the concentration was higher than the critical micelle concentration (CMC). Furthermore, the spreading coefficient increased with increase in concentration then stays unchanged. In the studied concentration range, the value of spreading coefficient is negative, indicating that it cannot rapidly spread the surfactant on the parafilm surface to an uniform film. The measurements show a linear relationship between the adhesion tension γlg cosθ and the surface tension in the concentration range of 2 × 10−6 mol L−1 to 1 × 10−4 mol L−1. The adsorbed amount of surfactant molecules at the parafilm-solution interface is lower than that at the gas-liquid interface. The value of WA was initially decreased then increased as the concentration was increasing and reaches a minimum value at the concentration near the CMC.

Kurzfassung

Die Benetzbarkeit von Phosphoniumbenzensulfonat auf Parafilm wurde mit Hilfe der dynamischen Kontaktwinkelmessung untersucht. Basierend auf den Oberflächenspannungsdaten wurden der Ausbreitungskoeffizient, die Adhäsionsspannung (γlg cosθ) und die Adhäsionsarbeit (WA) weiter analysiert. Es zeigte sich, dass Oberflächenspannung und der Kontaktwinkel mit zunehmender Konzentration abnahmen und konstant blieben, wenn die Konzentration höher war als die kritische Mizellenbildungskonzentration (CMC). Des Weiteren stieg der Ausbreitungskoeffizient mit zunehmender Konzentration an und blieb unverändert. Im untersuchten Konzentrationsbereich ist der Wert des Ausbreitungskoeffizienten negativ, was darauf hinweist, dass Phosphoniumbenzensulfonat sich nicht schnell zu einem gleichmäßigen Film auf der Parafilmoberfläche ausbreiten kann. Die Messungen zeigen eine lineare Beziehung zwischen der Adhäsionsspannung γlg cosθ und der Oberflächenspannung im Konzentrationsbereich von 2 × 10−6 mol L−1 bis 1 × 10−4 mol L−1. Die adsorbierte Menge der Tensidmoleküle an der Grenzfläche zwischen Parafilm und Lösung ist niedriger als die an der Grenzfläche zwischen Gas und Flüssigkeit. Der Wert von WA wurde anfangs verringert, stieg dann mit zunehmender Konzentration an und erreichte bei der Konzentration in der Nähe der CMC ein Minimum.


Correspondence address, Prof. Tao Geng, China Research Institute of Daily Chemical Industry 34 Wenyuan Street, Taiyuan, 030001, Shanxi Province, P.R. China, Tel.: +86-351-4077427, Fax: +86-351-4040802, E-Mail:
∗∗Mr. Shengfu Duan, E-Mail:

Shengfu Duan is a postgraduate student at the China Research Institute of the Daily Chemical Industry. His main research field is the synthesis and application of novel phosphonium-based ionic liquid surfactants.

Yajie Jiang is a senior engineer at the China Research Institute of the Daily Chemical Industry. Her research interests in the synthesis and application of novel quaternary ammonium salts with organic counterions.

Tao Geng is a professor at the China Research Institute of the Daily Chemical Industry. His main research field is the synthesis and application of novel quaternary ammonium salts, quaternary phosphonium salts and amino acid surfactants.

Hongbin Ju is an engineer at the China Research Institute of the Daily Chemical Industry. His main research interest is the synthesis of quaternary ammonium salts and their application in antibacterial and oil fields.

Yakui Wang is an engineer at the China Research Institute of the Daily Chemical Industry. His main research field is the synthesis of novel quaternary ammonium salts with organic counterions.


References

1. Souza, J. C., Neckel, I. T., Varalda, J., Ribeiro, E., Schreiner, W. H., Mosca, D. H., Sierakowski, M. R., Fernandes, V. and Ouerghi, A.: Wettability effect of graphene-based surfaces on silicon carbide and their influence on hydrophobicity of nanocrystalline cerium oxide films, J. Colloid Interface Sci.441 (2015) 7177. PMid:25490565; 10.1016/j.jcis.2014.10.070Search in Google Scholar PubMed

2. Chwastiak, S.: Calculation of contact angles from surfactant adsorption isotherms, J. Colloid Interface Sci.339 (2009) 196201. PMid:19695576; 10.1016/j.jcis.2009.06.063Search in Google Scholar PubMed

3. Ballard, N., Urrutia, J., Eizagirre, S., Schäfer, T., Diaconu, G., de la Cal, J. C. and Asua, J. M.: Surfactant Kinetics and Their Importance in Nucleation Events in (Mini)emulsion Polymerization Revealed by Quartz Crystal Microbalance with Dissipation Monitoring, Langmuir30 (2014) 90539062. PMid:25033420; 10.1021/la501028fSearch in Google Scholar PubMed

4. Chaudhuri, R. G. and Paria, S.: Dynamic contact angles on PTFE surface by aqueous surfactant solution in the absence and presence of electrolytes, J. Colloid Interface Sci.337 (2009) 555562. PMid:19505694; 10.1016/j.jcis.2009.05.033Search in Google Scholar PubMed

5. Sharifzadeh, S., Hassanajili, Sh. and Rahimpour, M. R.: Wettability alteration of gas condensate reservoir rocks to gas wetness by sol–gel process using fluoroalkylsilane, J. Appl. Polym. Sci.128 (2013) 40774085. 10.1002/app.38632Search in Google Scholar

6. Babu, K., Pal, N., Bera, A., Saxena, V. K. and Mandal, A.: Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery, Appl. Surf. Sci.353 (2015) 11261136. 10.1016/j.apsusc.2015.06.196Search in Google Scholar

7. Ivanova, N. A., Zhantenova, Zh. B. and Starov, V. M.: Wetting dynamics of polyoxyethylene alkyl ethers and trisiloxanes in respect of polyoxyethylene chains and properties of substrates, Colloids Surf., A413 (2012) 307313. 10.1016/j.colsurfa.2012.04.054Search in Google Scholar

8. Zdziennicka, A., Jańczuk, B. and Wójcik, W.: Wettability of polytetrafluoroethylene by aqueous solutions of two anionic surfactant mixtures, J. Colloid Interface Sci.268 (2003) 200207. 10.1016/S0021-9797(03)00702-1Search in Google Scholar

9. Zdziennicka, A., Jańczuk, B. and Wójcik, W.: The wettability of polytetrafluoroethylene by aqueous solutions of sodium dodecyl sulfate and propanol mixtures, J. Colloid Interface Sci.281 (2005) 465472. PMid:15571704; 10.1016/j.jcis.2004.08.102Search in Google Scholar PubMed

10. Szymczyk, K., Zdziennicka, A., Jańczuk, B. and Wójcik, W.: The wettability of polytetrafluoroethylene and polymethyl methacrylate by aqueous solution of two cationic surfactants mixture, J. Colloid Interface Sci.293 (2006) 172180. PMid:16038925; 10.1016/j.jcis.2005.06.038Search in Google Scholar PubMed

11. Harkot, J. and Jańczuk, B.: Adsorption of sodium bis(2-ethylhexyl) sulfosuccinate and wettability in polytetrafluoroethylene–solution–air system, Appl. Surf. Sci.253 (2007) 71667171. 10.1016/j.apsusc.2007.02.182Search in Google Scholar

12. Szymczyk, K. and Jańczuk, B.: Wetting Behavior of Aqueous Solutions of Binary Surfactant Mixtures to Poly(tetrafluoroethylene), J. Adhes. Sci. Technol.22 (2008) 11451157. 10.1163/156856108X309620Search in Google Scholar

13. Harkot, J. and Jańczuk, B.: The role of adsorption of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide surfactants in wetting of polytetrafluoroethylene and poly(methyl methacrylate) surfaces, Appl. Surf. Sci.255 (2009) 36233628. 10.1016/j.apsusc.2008.10.007Search in Google Scholar

14. Milne, A. J. B. and Amirfazli, A.: Autophilic Effect: Wetting of Hydrophobic Surfaces by Surfactant Solutions, Langmuir26 (2010) 46684674. PMid:20000426; 10.1021/la9035437Search in Google Scholar PubMed

15. Biswal, N. R. and Paria, S.: Wetting of TX-100 and Igepal CO-630 Surfactants on a PTFE Surface, Ind. Eng. Chem. Res.50 (2011) 61386145. 10.1021/ie2000456Search in Google Scholar

16. Chaudhuri, R. G., Sunayana, S. and Paria, S.: Wettability of a PTFE surface by cationic–non-ionic surfactant mixtures in the presence of electrolytes, Soft Matter8 (2012) 54295433. 10.1039/C2SM25309GSearch in Google Scholar

17. Bielawska, M., Jańczuk, B. and Zdziennicka, A.: Adhesion work and wettability of polytetrafluorethylene and poly(methyl methacrylate) by aqueous solutions of cetyltrimethylammonium bromide and Triton X-100mixture with ethanol, J. Colloid Interface Sci.404 (2013) 201206. PMid:23743047; 10.1016/j.jcis.2013.05.002Search in Google Scholar PubMed

18. Szymczyk, K., Zdziennicka, A., Krawczyk, J. and Jańczuk, B.: Correlation between wetting, adhesion and adsorption in the polymer–aqueous solutions of ternary surfactant mixtures–air systems, Appl. Surf. Sci.288 (2014) 488496. 10.1016/j.apsusc.2013.10.059Search in Google Scholar

19. Wang, W., Wei, H., Du, Z., Tai, X. and Wang, G.: Formation and Characterization of Fully Dilutable Microemulsion with Fatty Acid Methyl Esters as Oil Phase, ACS Sustainable Chem. Eng.3 (2015) 443450. 10.1021/sc500667nSearch in Google Scholar

20. Szymczyk, K. and Jańczuk, B.: Wettability of a Polytetrafluoroethylene Surface by an Aqueous Solution of Two Nonionic Surfactant Mixtures, Langmuir23 (2007) 87408746. PMid:17636997; 10.1021/la7008495Search in Google Scholar PubMed

21. Szymczyk, K.: Wettability of polymeric solids by ternary mixtures composed of hydrocarbon and fluorocarbon nonionic surfactants, J. Colloid Interface Sci.363 (2011) 223231. PMid:21821260; 10.1016/j.jcis.2011.07.029Search in Google Scholar PubMed

22. Liu, D., Xu, Z., Zhang, L., Luo, L., Zhang, L., Wei, T. and Zhao, S.: Adsorption Behaviors of Cationic Surfactants and Wettability in Polytetrafluoroethylene–Solution–Air Systems, Langmuir28 (2012) 1684516854. PMid:23148857; 10.1021/la304049zSearch in Google Scholar PubMed

23. Wang, W., Li, J., Yang, X., Li, P., Guo, C. and Li, Q.: Synthesis and properties of a branched short-alkyl polyoxyethylene ether alcohol sulfate surfactant, J. Mol. Liq.212 (2015) 597604. 10.1016/j.molliq.2015.09.034Search in Google Scholar

24. Duan, S., Jiang, Y., Geng, T., Ju, H., and Wang, Y.: Wetting, foaming, and emulsification properties of novel methyltriphenylphosphonium carboxylate ionic liquid surfactants, J. Dispersion Sci. Technol.10.1080/01932691.2018.1541416Search in Google Scholar

25. Lourith, N. and Kanlayavattanakul, M.: Natural surfactants used in cosmetics: glycolipids, Int. J. Cosmet. Sci.31 (2009) 255261. PMid:19496839; 10.1111/j.1468-2494.2009.00493.xSearch in Google Scholar PubMed

26. Bai, L., Liu, X., Jiao, T., Huo, Y. and Niu, J.: Interfacial tension, wettability, foam and emulsification properties of mono- and di-tetrapropylene diphenyl ether disulfonates, J. Dispersion Sci. Technol.39 (2018) 14471453. 10.1080/01932691.2017.1414611Search in Google Scholar

27. Shen, J., Bai, Y., Tai, X., Wang, W. and Wang, G.: Surface Activity, Spreading, and Aggregation Behavior of Ecofriendly Perfluoropolyether Amide Propyl Betaine in Aqueous Solution, ACS Sustainable Chem. Eng.6 (2018) 61836191. 10.1021/acssuSchemeng.7b04895Search in Google Scholar

28. Lucassen-Reynders, E. H.: CONTACT ANGLES AND ADSORPTION ON SOLIDS1,2, J. Phys. Chem.67 (1963) 969972. 10.1021/j100799a005Search in Google Scholar

29. Lucassen-Reynders, E. H.: Surface Equation of State for Ionized Surfactants, J. Phys. Chem.70 (1966) 17771785. 10.1021/j100878a016Search in Google Scholar

Received: 2018-11-19
Accepted: 2019-05-08
Published Online: 2019-07-13
Published in Print: 2019-07-17

© 2019, Carl Hanser Publisher, Munich

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Review Article
  4. Review on Silicone Surfactants: Silicone-based Gemini Surfactants, Physicochemical Properties and Applications
  5. Cleaning Agents
  6. Evaluation of Ethoxylated Rapeseed Oil Fatty Acids Methyl Esters as Nonionic Co-Surfactants in Hand Dishwashing Liquids
  7. Evaluation of the Bactericidal Activity of Didecyl Dimethyl Ammonium Chloride in 2-Propanol against Pseudomonas aeruginosa Strains with Adaptive Resistance to this Active Substance According to European Standards
  8. Environmental Chemistry
  9. Production of Bioemulsifier by Yeast from the Meyerozyma guilliermondii Complex Isolated from Soil Contaminated with Diesel Oil
  10. Physical Chemistry
  11. Fluorescence Study of Aggregation Behaviour of Cationic Surfactant Carbethopendecinium Bromide and its Comparison with Cetyltrimethylammonium Bromide
  12. Wettability of Phosphonium Benzene Sulfonate on Parafilm
  13. Study of Zinc-glycylglycine Complex with Ninhydrin in Aqueous and Cationic Micellar Media: A Spectrophotometric Technique
  14. Study on a Class of Cationic Gemini Surfactants
  15. Application
  16. The Performance Comparison Of Branched Methyl Stearate Ethoxylate and Linear Methyl Stearate Ethoxylate
  17. Study of the Rheological Behavior of a Spent Solution of Viscoelastic Surfactant in the Presence of Iron Ions
  18. Micellar Catalysis
  19. Synthesis of 2-(Prop-2-ynyloxy) Benzaldehyde using Salicyl Aldehyde and Propargyl Bromide in Aqueous Micellar Media
  20. Novel Surfactant
  21. Synthesis and Properties of Amphoteric Amide Surfactants with Reactive Group
Downloaded on 14.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110636/html?srsltid=AfmBOor74fEoBPjZbgbyo7Oco1zLok0tUAJFNi9Ig1zs_H1uOczq9T2E
Scroll to top button