Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
-
Lei Wang
, Pei Liu , Xiaojuan Lai , Jie Wang und Huaixin Li
Abstract
A series of betaine-type Gemini surfactants (Cs-BGS, where C is the methylene part of the spacer, s = 2, 4, 6) were synthesized from sodium 3-chloro-2-hydroxypropanesulfonate, oleamidopropyl dimethylamine and bromoalkane. The chemical structure of the prepared compounds was confirmed by 1H NMR, 13C NMR, IR spectra, and elemental analysis. Their critical micelle formation concentrations (CMC) in the aqueous solution at 25 °C were determined by measuring the surface tension and the electrical conductivity. As the length of the spacer increased, the values of their CMC and γcmc also increased. The surface tension measurements of C2-BGS revealed that the surfactant possesses a low CMC, is very efficient in reducing the surface tension, and is very strongly adsorbed at the air-water interface. In addition, the adsorption and micellization behavior of Cs-BGS was estimated from the efficiency of surface tension reduction (pC20), minimum average surface area per surfactant molecule (Amin), and standard free energies of micellization and adsorption. These properties are significantly affected by the spacers and the adsorption is more favored than the micellization.
Kurzfassung
Eine Reihe von Gemini-Tensiden vom Betain-Typ (Cs-BGS, wobei C der Methylenteil des Spacers ist, s = 2, 4, 6) wurde aus Natrium-3-chlor-2-hydroxypropansulfonat, Oleamidopropyldimethylamin und Bromalkan synthetisiert. Die chemische Struktur der hergestellten Verbindungen wurde durch 1H-NMR, 13C-NMR, IR-Spektroskopie und Elementaranalyse bestätigt. Ihre kritischen Mizellenbildungskonzentrationen (CMC) in der wässrigen Lösung bei 25 °C wurden durch Messung der Oberflächenspannung und der elektrischen Leitfähigkeit bestimmt. Mit zunehmender Länge des Spacers nahmen ihre CMC bzw. ihre Oberflächenspannung bei der CMC (γCMC) zu. Die Messungen der Oberflächenspannung von C2-BGS ergaben, dass das Tensid eine niedrige CMC hat, sehr effizient bei der Verringerung der Oberflächenspannung ist und an der Luft-Wasser-Grenzfläche stark adsorbiert. Darüber hinaus wurde das Adsorptions- und Mizellisierungsverhalten von Cs-BGS aus der Effizienz der Verringerung der Oberflächenspannung (pC20), der minimalen durchschnittlichen Fläche pro Tensidmolekül (Amin) und den Gibbs-Energien für die Mizellisierung und die Adsorption geschätzt. Diese Eigenschaften werden signifikant von den Spacern beeinflusst und die Adsorption ist stärker begünstigt als die Mizellenbildung.
References
1. Zana, R.: Dimeric (Gemini) Surfactants, in: K.Holmberg (Ed.) Novel Surfactants, Dekker, New York (1998) 241. 10.1201/9780203911518.ch7Suche in Google Scholar
2. Zana, R.: Structure-performance relationships in surfactants, in: K.Esumi, M.Ueno (Eds.), Structure-performance relationships in surfactants, Dekker, New York (1997) 255. 10.1021/bk-1984-0253Suche in Google Scholar
3. Rosen, M. J. and Tracy, D. J.: Gemini surfactants, J. Surfact. Deterg.1 (1998) 547. 10.1533/9781845698614.151Suche in Google Scholar
4. Menger, F. M. and Keiper, J. S.: Gemini surfactants, Angew Chem. Int. Ed. Engl.39 (2000) 1906. 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSuche in Google Scholar
5. Zana, R. and Xia, J: Gemini surfactants : synthesis, interfacial and solution-phase behavior, and applications, in: RaoulZana, JidingXia (Eds), Gemini surfactants: Synthesis, interfacial and solution-phase behavior, and applications, Dekker, New York (2004) 348. 10.1201/9780203913093Suche in Google Scholar
6. Menger, F. M. and Littau, C. A.: Gemini surfactants: a new class of self-assembling molecules, J. Am. Chem. Soc.115 (1993) 10083. 10.1021/ja00075a025Suche in Google Scholar
7. Tyagi, P. and Tyagi, R.: Synthesis, structural properties and applications of gemini surfactants: a review, Tenside Surfact Det.46 (2009) 373–382. 10.3139/113.110045Suche in Google Scholar
8. Zana, R.: Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution, J. Colloid Interface Sci.248 (2002) 203–220. PMid:16290524; 10.1006/jcis.2001.8104Suche in Google Scholar
9. Liu, Z., Gao, R., Dong, Z., Li, X. and Zhao, J.: Quaternary ammonium gemini surfactants used in enhanced oil recovery: synthesis, properties, and flooding experiments, Tenside Surfact. Det.54 (2017) 260–27. 10.3139/113.110489Suche in Google Scholar
10. Alami, E., Beinert, G., Marie, P. and Zana, R.: Alkanediyl-.alpha.,.omega.-bis (dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface, Langmuir.9 (2002) 1465–1467. 10.1021/la00030a006Suche in Google Scholar
11. Shukla, D. and Tyagi, V. K.: Preparation and performance properties of a series of novel anionic gemini surfactants, Tenside Surfact Det.45 (2008) 72–75. 10.3139/113.100363Suche in Google Scholar
12. FerdinandDevi, nsky, Lacko, I. and Imam, T.: Relationship between structure and solubilization properties of some bisquaternary ammonium amphiphiles, J. Colloid Interface Sci.143 (1991) 336–342. 10.1016/0021-9797Suche in Google Scholar
13. Alami, E., Levy, H., Zana, R. and Skoulios, A.: Alkanediyl-.alpha omega.-bis (dimethylalkylammonium bromide) surfactants. 2. structure of the lyotropic mesophases in the presence of water, Langmuir.9 (1993) 940–944. 10.1021/la00028a011Suche in Google Scholar
14. Frindi, M., Michels, B., Levy, H., and Zana, R.: Alkanediyl-.alpha omega.-bis (dimethylalkylammonium bromide) surfactants. 4. Ultrasonic absorption studies of amphiphile exchange between micelles and bulk phase in aqueous micellar solution, Langmuir.10 (1994) 1140–1145. 10.1021/la00016a028Suche in Google Scholar
15. Danino, D., Talmon, Y., and Zana, R.: Alkanediyl-.alpha omega.-bis (dimethylalkylammonium bromide) surfactants (dimeric surfactants). 5. aggregation and microstructure in aqueous solutions, Langmuir.11 (1995) 1448–1456. 10.1021/la00005a008Suche in Google Scholar
16. Ali, E. S.: Synthesis, characterization and thermodynamic parameters of anionic gemini surfactants with different spacer groups, Tenside Surfact Det.44 (2007) 281–286. 10.3139/113.100349Suche in Google Scholar
17. Li, Z. X., And, C. C. D., and Thomas, R. K.: Neutron reflectivity studies of the surface excess of gemini surfactants at the air-water interface, Langmuir.15 (1995) 4392–4396. 10.1021/la981551uSuche in Google Scholar
18. Fielden, M. L., And, P. M. C., and Verrall, R. E.: Investigating the adsorption of the gemini surfactant “12–2–12” onto mica using atomic force microscopy and surface force apparatus measurements, Langmuir.15 (1999) 3924–3934. 10.1021/la981342+Suche in Google Scholar
19. Diamant, H. and Andelman, D.: Dimeric surfactants: a simplified model for the spacer chain, Langmuir.11 (1995) 3605–3606. 10.1021/la00009a055Suche in Google Scholar
20. Tsubone, K., Arakawa, Y., and Rosen, M. J.: Structural effects on surface and micellar properties of alkanediyl-α,ω-bis-(sodium n-acyl-β-alaninate) gemini surfactants, J. Colloid Interface Sci.262 (2003) 516–524. 10.1016/S0021-9797(03)00078-XSuche in Google Scholar PubMed
21. Liu, Q., Yuan, J., Li, Y., and Yao, S.: Long chained gemini surfactants for semipermanent wall coatings in capillary electrophoresis of proteins. Electrophoresis, 29 (2008)871–879. PMid:18297646; 10.1002/elps.200700391Suche in Google Scholar PubMed
22. Camesano, T. A. and Nagarajan, R.: Micelle formation and cmc of gemini surfactants: a thermodynamic model, Colloids Surf A Physicochem Eng Asp.167 (2000) 165–177. 10.1016/S0927-7757(99)00473-2Suche in Google Scholar
23. Liu, L. and Rosen, M. J.: The interaction of some novel diquaternary gemini surfactants with anionic surfactants, J. Colloid Interface Sci.179 (1996) 454–459. 10.1006/jcis.1996.0237Suche in Google Scholar
24. Bakshi, M. S., Singh, J., Singh, K., and Kaur, G.: Mixed micelles of cationic 12–2–12 gemini with conventional surfactants: the head group and counterion effects, Colloids Surf A Physicochem Eng Asp.237 (2004) 61–71. 10.1016/j.colsurfa.2004.01.030Suche in Google Scholar
25. Zhao, J., And, S. D. C. and Fung, B. M.: Mixtures of monomeric and dimeric cationic surfactants, J. Phys. Chem. B.102 (1998) 7613–7618. 10.1021/jp982131gSuche in Google Scholar
26. Diamant, H. and Andelman, D.: Dimeric surfactants: spacer chain conformation and specific area at the air/water interface, Langmuir.10 (1994) 2910–2916. 10.1021/la00021a012Suche in Google Scholar
27. Hattori, N., Hirata, H., Okabayashi, H., Furusaka, M., O'Connor, C. J. and Zana, R.: Small-angle neutron-scattering study of bis (quaternaryammonium bromide) surfactant micelles in water. Effect of the long spacer chain on micellar structure, Colloid.Polym.Sci.277 (1999) 95–100. 10.1007/s003960050373Suche in Google Scholar
28. Camesano, T. A. and Nagarajan, R.: Micelle formation and cmc of gemini surfactants: a thermodynamic model, Colloids Surf A Physicochem Eng Asp.167 (2000) 165–177. 10.1016/S0927-7757(99)00473-2Suche in Google Scholar
29. Hirata, H., Hattori, N., Ishida, M., Okabayashi, H., Frusaka, M. and Zana, R.: Small-angle neutron-scattering study of bis (quaternary ammonium bromide) surfactant micelles in water. effect of the spacer chain length on micellar structure, J. Phys. Chem.99 (2002) 17778–17784. 10.1021/j100050a017Suche in Google Scholar
30. Qi, H., Bai, Z., Zhang, Q. and Lai, X.: Synthesis of a gemini betaine surfactant and its properties as foam drainage agent, Tenside Surfact Det.55 (2018) 142–147. 10.3139/113.110551Suche in Google Scholar
31. Bakshi, M., Sachar, S., Mahajan, N., Kaur, I., Kaur, G., Singh, N., Sehgal, P., and Doe, H.: Mixed-micelle formation by strongly interacting surfactant binary mixtures: Effect of head-group modification, Colloid.Polym.Sci.280 (2002) 990–1000. 10.1007/s00396-002-0717-9Suche in Google Scholar
32. Rosen, M. J. and Kunjappu, J. T.: Surfactants and interfacial phenomena, 4th edition, Colloids & Surfaces.40 (2012) 347–347. 10.1002/9781118228920Suche in Google Scholar
33. Zana, R.: Alkanediyl-alpha, omega-bis (dimethylalkylammonium bromide) surfactants 10. behavior in aqueous solution at concentrations below the critical micellization concentration: an electrical conductivity study, J. Colloid Interface Sci.246 (2002) 182–190. PMid:16290399; 10.1006/jcis.2001.7921Suche in Google Scholar PubMed
34. YouY., ZhaoJ X., and JiangR.: Synthesis of quaternary ammonium salt Gemini surfactants and their micellization characteristics in oxyethylene chain. Fine Chemicals, 21 (2004) 571–574. 10.13550/j.jxhg.2004.08.004Suche in Google Scholar
35. GoddardE D.: Surfactants and interfacial phenomena, Colloids & Surfaces.40 (1989) 347–347. 10.1016/0166-6622(89)80030-7Suche in Google Scholar
36. Li, X., Hu, Z., Zhu, H., Zhao, S. and Cao, D.: Synthesis and properties of novel alkyl sulfonate gemini surfactants, J. Surfact. Deterg.13 (2010) 353–359. 10.1007/s11743-010-1188-5Suche in Google Scholar
37. Ao, M., Xu, G., Zhu, Y. and Bai, Y.: Synthesis and properties of ionic liquid-type gemini imidazolium surfactants, J. Colloid Interface Sci.326 (2008) 490–495. PMid:18657824; 10.1016/j.jcis.2008.06.048Suche in Google Scholar PubMed
38. TianD. M., WangJ. Y. and YuanY.: Determination of a Novel Bola Surfactant and Its Critical Micelle Concentration by Different Methods, Journal of Shenyang Normal University (Natural Science).34 (2016) 397–401. 10.3969/j.issn.1673-5862.2016.04.004Suche in Google Scholar
39. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization, Langmuir.12 (1996) 1208–1211. 10.1021/la950691qSuche in Google Scholar
40. Yoshimura, T., Sakato, A., Tsuchiya, K., Ohkubo, T., Sakai, H., Abe, M., and Esumi, K.: Adsorption and aggregation properties of amino acid-based N-alkyl cysteine monomeric and N,N'-dialkyl cystine gemini surfactants, J. Colloid Interface Sci.308 (2007) 466–473. PMid:17291521; 10.1016/j.jcis.2006.11.038Suche in Google Scholar PubMed
41. ZhaoX. T., NiJ., and WangY. L.: Effects of linking groups on the interfacial tension and foaming properties of sulfonate-based Gemini surfactants. Acta Petrolei Sini-ca (Petroleum Processing), 27 (2011) 218–223. 10.3969/j.issn.1001-8719.2011.02.011Suche in Google Scholar
42. LiaoH., TangS. F., and LeiX. Y.: Research progress on the effect of linking groups on the performance of Gemini surfactants. Fine Chemicals21 (2013) 39–42. 10.19482/j.cn11-3237.2013.08.017Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Characteristic and Application of Anionic Dimeric Surfactants: A Review
- Body Care
- Reduction of Irritation Potential Caused by Anionic Surfactants in the Use of Various Forms of Collagen Derived from Marine Sources in Cosmetics for Children
- Environmental Chemistry
- Optimization of Biosorption Conditions for Surfactant Induced Decolorization by Anaerobic Sludge Granules
- Evaluation of Polyether Copolymer as Green Scale and Corrosion Inhibitor in Seawater
- Physical Chemistry
- Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
- Study on the Synergism of Binary Surfactant Mixtures containing N-lauroyl-N-methyl Taurine Sodium
- Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
- Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
- Synthesis
- Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate
- Synthesis and Properties of Lauryl Phosphate Monoester
- Novel Surfactants
- Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Characteristic and Application of Anionic Dimeric Surfactants: A Review
- Body Care
- Reduction of Irritation Potential Caused by Anionic Surfactants in the Use of Various Forms of Collagen Derived from Marine Sources in Cosmetics for Children
- Environmental Chemistry
- Optimization of Biosorption Conditions for Surfactant Induced Decolorization by Anaerobic Sludge Granules
- Evaluation of Polyether Copolymer as Green Scale and Corrosion Inhibitor in Seawater
- Physical Chemistry
- Schiff' Bases as Corrosion Inhibitor for Aluminum Alloy in Hydrochloric Acid Medium
- Study on the Synergism of Binary Surfactant Mixtures containing N-lauroyl-N-methyl Taurine Sodium
- Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants
- Study on the Complex System of Sodium Lauryl Diphenyl Ether Disulfonate and Dodecyl Dimethyl Hydroxyethyl Ammonium Chloride
- Synthesis
- Synthesis and Properties of 9,10-Dihydroxystearic Acid Ethoxylate
- Synthesis and Properties of Lauryl Phosphate Monoester
- Novel Surfactants
- Dehydroabietyl Glycidyl Ether Grafted Hydroxyethyl Chitosan: Synthesis, Characterization and Physicochemical Properties