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Origin, Properties, Production
and Purification of Microbial Surfactants
as Molecules with Immense Commercial

Potential

Microbial surfactants are produced by various sources (terres-
trial and marine environments, sludges, etc.) of microorganisms.
The production of biosurfactants in a culture medium is deter-
mined by the secretion of the surface active molecules, which
supports both the reduction of the surface tension and the low-
ering of the critical micelle concentration (CMC). Biosurfactant
molecules consisting of lipophilic and hydrophilic moieties have
been described for various applications (physiochemical, bio-
logical, commercial and nanotechnological) due to their struc-
tural properties and their molecular weight, which is generally
between 500 Da- 1500 Da. Although, biosurfactants have nor-
mally better application properties than conventional surfac-
tants, the production of them in higher scale is limited due to
certain constraints. These constrains are addressed in different
studies: Kinetics, statistical design (Taguchi, factorial design,
RSM etc.) and computational tool (ANN-GA) have been per-
formed to improve the yields. Along with that, few studies also
described the batch and fed batch fermentation for the better
commercial level production. However, no defined commercial
method is available for the purification of the biosurfactants.
Few studies demonstrated the purification by gel exclusion chro-
matography (SEC, gel filtration chromatography) and ultrafiltra-
tion/diafiltration that have been partially established. This re-
view article outlines the detailed reports on these.

Key words: Biosurfactants, physiochemical properties, kinetics
and production, process optimization, batch and fed batch fer-
mentation, purification technology, biological activities, nano-
technology

Herkunft, Eigenschaften, Herstellung und Reinigung von
mikrobiellen Tensiden als Molekiile mit riesigem kommer-
ziellem Potenzial. Tenside mikrobieller Herkunft werden von
Mikroorganismen aus unterschiedlichen Quellen (terrestrische
und marine Umwelten, Kldrschlamm, etc.) erzeugt. Die Produk-
tion von Biotensiden in einem Kulturmedium wird durch die
Sekretion der oberflichenaktiven Molekiile bestimmt, was so-
wohl die Reduktion der Oberflaichenspannung als auch die Ab-
senkung der kritischen Mizellenkonzentration (CMC) unterstitzt.
Biotensidmolekiile bestehend aus liphophilen und hydrophilen
Anteilen wurden aufgrund ihrer strukturellen Eigenschaften und
ihres Molekulargewichts, das im allgemeinen zwischen 500 Da—
1500 Da liegt, fiir verschiedene Anwendungen (physiochemi-
sche, biologische, kommerzielle und Nanotechnologie) be-
schrieben. Obwohl Biotenside in der Regel bessere Anwen-
dungseigenschaften als konventionelle Tenside aufweisen, ist

' Premas Biotech Pvt Ltd, IMT Manesar, Gurgoan, India

Department of Biotechnology, Indian Institute of Technology Kharagpur, West
Bengal 721302, India

92

ihre Herstellung in hoherem MaBstab aufgrund bestimmter Be-
schrankungen begrenzt. Diese Einschrdnkungen werden in ver-
schiedenen Studien untersucht: Kinetik, statistisches Design
(Taguchi, fraktorielle Versuchsplédne, RSM etc.) und computerge-
stlitzte Rechenprogamme (ANN-GA) wurden entwickelt, um die
Ausbeuten zu verbessern. Es steht jedoch fiir die Reinigung der
Biottenside kein definiertes kommerzielles Verfahren zur Ver-
fligung. Wenige Studien zeigten, dass die Reinigung durch Gel-
ausschlusschromatographie (SEC, Gelfiltrationschromatographie)
und Ultrafiltration/Diafiltration sich teilweise bewahrt hat. Dieser
Ubersichtsbeitrag skizziert die detaillierten Berichte, die zuvor
dazu beschrieben wurden.

Stichwaorter: Biotenside, Physikalisch-chemische Eigenschaften,
Kinetik, Herstellungsverfahren, Verfahrensoptimierung, Batch-
fermentation, Fed-Batch-Fermentation (Zulauffermentation), Auf-
reinigungstechnologie, Biologische Aktivitdt, Nanotechnologie

1 Introduction

Microbial surfactants are amphiphilic surface active mole-
cules produced by various microorganisms. The structure
of these molecules are basically composed of saturated, un-
saturated or fatty acids (hydrophobic tail portion) and com-
prised of amino acids or peptides or polysaccharides (hydro-
philic head moieties) that helps to partition preferentially at
the interface between two liquid phases [1-3]. Depending
on the chemical nature of the two distinct moieties, micro-
bial surfactants are broadly classified into different diverse
groups such as glycolipids, lipopeptides, lipoproteins, fatty
acids, neutral lipids, phospholipids, particulate and poly-
meric biosurfactants [3-5]. Microbial surfactants are po-
tentially more applicable in industrial processes than other
surfactants because of their desirable properties such as mi-
crobial enhanced oil recovery (MEOR) and of their use as
emulsification agents in pharmaceutical, food, dye, cos-
metic, and agrochemical industries [5—10]. The contribution
of these molecules in environmental applications is signifi-
cant [11, 12], which describe the biodegradation of hydrocar-
bon contaminants and the removal of heavy metals [13-15].
The potential use of biosurfactants in medical fields have
also rapidly increased by the therapeutic properties of bio-
surfactants such as antiviral, antitumor and antimicrobial
agents [16—20]. Due to menace of drug resistance against
pathogenic microorganisms, these microbial surface active
molecules may find potential applications as drug candi-
dates for new age chemotherapy and may occupy an impor-
tant place in biopharmaceutical industries [19, 20].
However, production and kinetics of these molecules have
not been discussed extensively. The objective of this review
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is to help the scientific community for exploring the biosur-
factants kinetics, production achievements, purification and
its applications.

Most of the biosurfactants and their producers are re-
ported from terrestrial and very few are from marine envir-
onments (Table 1).

Glycolipids are biosurfactants composed of carbohydrates
and long chain aliphatic acids with low-molecular weight.
The family comprised of rhamnolipids, sophorolipids, treha-
lolipids, helps in solubilizing the hydrocarbon contaminant
into the fermentation broth during the fermentation, which
can be utilized as substrate by producer microorganisms
(Lead and Cadmium [13]) and hydrocarbons (tetradecane,
aliphatic and aromatic) [11, 12, 29-50]. Recently, a new
form of biosurfactant has been identified based on its struc-
tural properties and named as glycopeptide or glycolipopep-
tide which belongs to glycolipid family. The partially charac-
terized glycopeptide was derived from lactic acid bacterium,
Lactobacillus pentosus and showed a good emulsification ac-
tivity [48, 119)].

On other hand, lipopeptide from marine isolate Azetobac-
ter chroococum displayed excellent physiochemical and bio-
degradation properties [38]. Similarly, a marine bacterium
utilized the polyaromatic hydrocarbons (PAHs) as substrate
for biosurfactant production [11] and also exhibit heavy met-
als (lead and cadmium) remediations [13]. The exhibition of
good emulsification property and oil dispersion activity (Ta-
ble 3) of this molecule suggests that it can be used as emul-
sifier in commercial industrial applications [38—40].

Lipopeptide type of biosurfactants gained attention, be-
cause of its unique therapeutic [16—43] and environmental
applications [44—50]. Several strains of Bacillus sp. have been
reported to be major producers of lipopeptides (described in
Table 1) such as surfactin, lichenysin, fengycin, bacillomycin

and iturin [46—54]. The presence of multimodular enzyme
complexes known as non-ribosomal peptide synthetases
(NRPs), conserved naturally in various Bacillus sp., that are
responsible for the secretion of lipopeptides [7, 18, 62—66].
The first biologically active lipopeptide surfactin, was de-
rived from Bacillus subtilis [67]. Surfactin, a cyclic lipopep-
tide, consists of a heptapeptide and B-hydroxy fatty acid with
acyl chain length ranging from 12-18 carbons [4-7]. Var-
ious forms of surfactin are identified in the molecular mass
range of (m/z) 900—1095 Da [68, 69]. Fengycin, another bio-
logically active lipopeptide having an antifungal property
which is also composed of B-hydroxy fatty acid chain at-
tached with a smaller peptide part comprising of 10 amino
acids [71-74]. Two variants of fengycin are identified and re-
ported as fengycin A and fengycin B [71-73]. The basic dif-
ference among these isoforms is the presence of either va-
line or alanine at the sixth position of the lactone ring [70].
The lipopeptide molecules are detected in their protonated
form or as Na* or K* adducts by MALDI-ToF mass spectro-
metry in the m/z range of 1400—1550 Da [70-74].

2 Physiochemical Properties

The physiochemical properties of biosurfactants are defined
by ionic strength and low critical micelle concentration
(CMC). Biosurfactants are comprised with apolar and polar
moieties. The polar moieties will define the ionic strength of
the biosurfactant [47-50]. These surfactants are classified
into anionic, cationic, zwitterionic and non-ionic; based on
the presence of ions in hydrophilic head portion of the sur-
factant [39—44]. Most of the biosurfactants are categorized
into anionic and non-ionic which can be detected by conven-
tional methods [2-7]. Glycolipid and gylcolipopeptide have
been identified as anionic and the lipopeptides are classified

Origin Producer Microorganisms Isolation site Type of Biosurfactant References
Terrestrial Bacillus subtilis C-1 Petroleum sludge Lipopeptides 5
Bacillus sp. Hydrocarbon contaminated sites Biosurfactants, (ND)* 21
Bacillus subtilis DSM 3256 Terrestrial origin Biosurfactants (ND)* 39
Bacillus amyloliquefaciens FZB42 Environmental isolate Lipopeptides 54
Bacillus subtilis MZ-7 55
Bacillus megaterium Soil Lipopeptides 46
Bacillus thuringiensis CMB26 54
Bacillus coagulans 64
Bacillus licheniformis HSN221 Qil field Biosurfactant (ND)* 62
Bacillus licheniformis JF-2 Fermented food Lipopeptide 51, 65
Marine Bacillus sp. Marine source Lipopeptide 21,23
Bacillus circulans Anadaman Nicobar Island, India 25-28
Pseudomanas sp. Islands of Xiamen, Taiwan 35
Bacillus pumilus Marine sponge Iricna sp. 36
Brevibacillus laterosporus Papua New Guinea 37
Halomonas sp. Ross Sea, Antarctica Glycolipid 31
Nocardiodes sp. Antarctic soil 32
Bacterial strain MM 1 Sea-Water 33
Pantoea sp. Frazier Islands 34
*ND: Not determined
Table 1 Types of biosurfactant derived from different microorganisms and their origin
Tenside Surf. Det. 54 (2017) 2 93
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as non-ionic biosurfactants [2—7, 58]. The higher ionic force
of the biosurfactant will be responsible for forming a stable
emulsion which helps in microbial enhanced oil recovery
MEOR by the adverse activity in higher salt tolerance [10,
51, 52].

The molecular dynamics of the biosurfactants are ionic
strength, density, viscosities and surface tension of the solu-
tion and interaction with the solute which have been de-
scribed recently [41-45]. The characteristic ionic strength
curvature will be mathematically determined by the hydro-
philic-lipophilic deviation HLD equation [51-54]. The hy-
drophilic and liphophilic balance value (the range is from
0-20) is one of the critical physiochemical parameters com-
menced by density, viscosity, conductivity of the biosurfac-
tants. The lower the HLB value defines the liphophilic
(water in oil emulsion) nature whereas the higher the value
defines an oil in water emulsion [54, 55]. Briefly, the study
described about the interaction and intermolecular dimen-
sion of commercially available synthetic surfactant (CPC,
CPB, CTAB) versus EPC biosurfactant in aqueous oil mix-
ture which described the EPC biosurfactant is the best emul-
sifier to use [56].

In addition to this CMC of the standard surfactin (Sigma,
USA) was found to be 13.0 mg L™ [57]. The lower CMC val-
ue indicates that a lower amount of surfactant is required to
achieve the minimum surface tension and hence, the higher
the potential and purity are [27, 58]. The CMC of biosurfac-
tant is the minimum amount required for the onset of the
process of micellization. At this and at higher concentra-
tions, the surface tension reaches a minimum value and will
form the macromolecular structure resulting in bigger mi-
celles, vesicles and the formation of lamellae [54—57]. Bio-
surfactants have been reported to have wide ranges of low
CMC values (9.0 —15.0 mg L) [59-76] to very high CMC
values (40.0—150.0 mg L) [28, 58]. The properties of CMC
possess several advantages over those of the chemically de-
rived surfactants.

Different studies have been described the implication of
biosurfactant stability at different pH, salinity and tempera-
tures [8—10]. These parameters will define the exact solubil-
ity and surface activity parameters of biosurfactants which
can be used for biodegradation studies [77-78]. For exam-
ple, a biosurfactant from Bacillus subtilis exhibits an excellent
stability at higher temperature (100°C) and a wide pH range
(3.0—11.0) [8]. Lipopeptide obtained from Bacillus subtilis C9
displayed a stability from pH 5.0-9.0, when incubated at
100°C and also the stability was up to 1.0 M for NaCl and
10.0 mM for CaCl, [9, 10]. Recently, a synergistic effect of
salt concentration, pH and temperature was studied on bio-
surfactant solubility using the Box—Behnken response sur-
face methodology. The critical parameters were identified
as pH (3.0-8.0 range) and salinity (NaCl, 1.0-5.0 %) which
influence the surface active properties whereas the tempera-
ture showed negligible effect within the tested parameters
(5-56°C) found good emulsification of gasoline/water
emulsion [78].

For nano application, a biosurfactant has the capability to
conjugate with nano-SiO, which helps to enhance the sur-
face activity in the solution. On other hand, the author de-
scribed the complex study of oil spreading nano-SiO, conju-
gated with biosurfactant that helps in forming the stable
structure on surface activity evident from TEM analysis and
in reducing the interfacial tension [79]. These above de-
scribed properties cause the biosurfactants to be potential
candidats for environmental applications as compared to
chemically synthetic surfactant which can affect on the mi-
crobial activities [1-10, 76-79].
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3 Production of Microbial Surfactants — Media, Kinetics
and Fermentation processes

The secretion or production of these biosurfactants are de-
pendend on critical limiting substrates; mainly of carbon
and nitrogen source (see Table 2) [1-4]. The importance of
the nutritional requirements for biosurfactant production
has been discussed below.

31 Medium
311 Effect of carbon and nitrogen sources on biosurfactant production

The carbon source helps to attain higher cell concentrations
which improved the biosurfactant yield by 23.0% [83, 84],
(Table 2). Different forms of carbon sources are treated for
the production such as the agro-industrial product/by-pro-
ducts, glucose or starch as carbon source for the production
of biosurfactant (yield by CMC 17.0 mg L) from Bacillus
coagulans [75]. The best carbon sources for Bacillus subtilis
S499 were glucose, fructose and sucrose which help to se-
crete the surfactin with the maximum yield of 110.0 mg L™
[85]. The biosurfactant from probiotic bacteria also showed a
better production improvement by utilizing a carbon source
with the yield of 1.40 g L1 [86, 87]. Most of the microorgan-
isms also produced biosurfactant by utilizing the hydrocar-
bon substrates as carbon sources. For example, the poly-
aromatic hydrocarbon anthracene was utilized as carbon
source by the marine strain of Bacillus circulans [11].

The choice of inexpensive raw materials is available nowa-
days possible which can be used as carbon source, especially
agro-industrial waste having a higher carbon content such
as corn steep liquor, brewery industries, food industries, oil
industries [45-80]. By using these inexpensive raw materi-
als, the process costs can be controlled for the market needs.
The effect of carbon sources such as n-hexadecane, olive oil
and glucose on the biosurfactant production from Pseudomo-
nas fluorescens has been studied extensively. The study
showed that a better production was observed in n-hexa-
decane and olive oil acting as carbon source as compared to
glucose [88]. Candida antarctica KCTC 7804, yielded a maxi-
mum biosurfactant concentration of 41.0 g L achieved by
feeding glycerol and olive oil during the initial and exponen-
tial phase of feeding respectively [89]. When vegetable oil
was used as precursor during the fermentation, a maximum
biosurfactant concentration of 31.0 g L™! from Candida ant-
arctica KCTC 7804 was obtained [89]. The addition of a car-
bon source in the precursor formed during the fermentation
process will also induce the biosurfactant production [22].
The addition of vegetable oil carbohydrates into the culture
medium of Torulopsis sp. resulted in an increased biosurfac-
tant yield of about 70.0 g L™ [90].

In cells, biosurfactant production varied as intra or extra-
cellular functionality during the fermentation process which
depends particularly on the choice of the carbon source [80].
Marine bacteria are known to have the potential to degrade
lipophilic compounds, and they enhance their bioavailability
[88]. The growth of the microorganism on lipophilic com-
pounds is accompanied by a cell surface modification, which
helps to secrete the biosurfactant production [81].

Nitrogen source is also identified as critical component,
the best nitrogen source for biosurfactant production from
Bacillus subtilis S499 was found to be L-amino acids (L-gluta-
mic acid, L-valine, L-lysine and f-alanine) [91]. Surfactin
produced by Bacillus subtilis ATCC 21332 in batch culture
production was highly influenced by the nitrogen metabo-
lisms [84]. The nitrogen and C/N ratio were used as nutri-

Tenside Surf. Det. 54 (2017) 2



swisiuediooniw Jaonpold ay) o sialeweled sonauy pue (Sg) SIURRUNSOIq Jo Indino uononpoid euiixew Ul paajoAul sjuauodwiod Asy sy pue uonelado sseooid uonelusuwia{  Z 9|qeL

SUDDIY0D PIBIA = A ‘PaUILLIBISP JON = N %

95

C. Sivapathasekaran and Ramkrishna Sen: Origin, properties, production and purification of microbial surfactants

(Y -88910) ©0 (Y, 88 17°7) *0 ‘(8 861°0) A SOOINY1
Ol 118w $9°¢9z (aN) uepepnsolg (88 ¢70) ¥4\ (13 8 11'0) ¥/9x (1Y O1'0) 8s00n|D (QN) wodien 14 sijnqns snjjog
(puepaziims
‘plepn‘Buusauidugolg)
36 18686 unorHNS s||92 Aup Jo 8/3w 68 =0 ‘|apol yolIe)s 9|qnjos 12)UBWIRY T £°S 000Z-4TH 83 Siqgns snjjopg
(puepezims
(,-8881'0) ¥A!(,-8 888'0) ¥4A !(,8 3 £1'0) /A ‘plep'Sunsauiduzorg) 1828 DDLIN
96 18191 sopndadodn 115 80°0 &M 's|j0 Aip Jo, 8 8 676 =0 ‘jopowl d1 9500n|D 12JUBLLIRY T £°¢ 000Z-4T subjn2ID snjDg
(ueder
UONRIUBLLID) ‘lysigniey 3 g ‘jepow
6 1-1806°¢1 sopndadodn (Y118 £60°0) ‘D (-8 8 £T'1) ¥/4A !(,-8 B £10) /A uadYNs €0 "“0DH"HN TAW) JRWRWIR 1 0°E 6D Sihqns snjjopg
(188 120°0) ¥4A
‘pajwi| uaSomniu diqosae ‘(-8 8 8900°0) /4A
‘palil| uogued diqosse (-8 8 6900°0) /94 ‘pate|dep
uadAxo panwii-uoqied!(;_8 8 z10'0) /9 ‘pars|dop
uaBAxo paywir-wniuowwy (8 8 5/0°0) V4A 9JeJlU wnjuowwe (VSN 'IN) Yimsunig 433%4
16 18w oz1e unoepNg pajo|dap (0) us8AxQ ‘panw) (N) usSomN ‘uonenw| usSomN MIN ‘Wa)sAs || ool DLV S1gns snjjpbg
4=}
9/ w8 gl (@N) wepepunsolg anN as00n|D J)UBWIR) TG SILLIOJIUBYDY| SNjjIoDg
IEVETTIET 96¢e
6% 180l unoRpNg anN 3s0on|n 2INYND -IUWQ SIMIAT Z INSQ Siugns snjpg
al 18Tre (@N) wepepnsolg (133 8Y°0) ¥IA1(,8380°0) A asoon|H Ysel eys ds snjopg
unoeuns 98
L1 payund | 18 200 (9819) epepns (188 £z0) YA (88 56°0) A 8s00n|D Asel} o4eys SIwojiuaY2lf snjjidDg
a)sem |elisnpul 0.8y
LU0} J3}M D)SBM INOJ} PARS
-SeD pue sasse|op\ ‘Alnsnpuj
oLl 180¢ (QN) uepeunsolg anN 95930 WOy} ASYAN ‘@500Nn|D ysel} aYeyS egg1 “ds snjjoog
zoL -180°¢ (aN) wuepepnsolg an 1uanjys Ansnpur eAessed) fsel} eys egg1 “ds snjjoog
alsem ceele
Lol 180zT (aN) wwepepnsolg an Auedwiod seonpoid Apue) Sel} 4eys DDDLY Signs snjjiopg
(188 70) ¥*A (-8 8 550) ¥/IA
18 1Y (88 ¢1'0) /I ‘(Y 1y'0) pue (1-88610) A 1828 DDLIN
66 pue _1385C JURRHNSOIg ‘(.8 8w Q) ¥4A 1(,88 80°0) A “(,_Y T'0) W INININ S9SI9A INSIND Yyse|d eys supjnoud snjjiobg
18 ¢67 pue IO INUOD0D ¥y Dsou
/S 1816718859 pidijouweyy anN pue [lo wjed ‘[lo 9A0 ysejs a%eys -1bniep spuowopnasd
¢ REIVA pidjooAD @]\ 9500N|5 Jsel} aXeys LINW uIDAis [DL21dDg
uiyesed-u 1oy [ENEEIEN jueNw g-Ng3 bsou
1 -180¢°9 pue oLt (AQN) wepeynsolg 1opaq ate senjen (88 G1'g) X4 !(, 8 8 z2'0) S/9A ‘suedapexaH’ulyeled-u ySey eys -1bnsap spuowopnasy
S0 panaiyoe uopnpoid
RIEIEIEN uonpnpoid ewixepy sg jo adAL uofeUIWLISIdP So1dUIY Sg 1o} uoipNpul Jo INOS suonesadQ swsiuedi000Ip\

Tenside Surf. Det. 54 (2017) 2



C. Sivapathasekaran and Ramkrishna Sen: Origin, properties, production and purification of microbial surfactants

(psnunuod)  z 9|qeL

SIUSDIYA0D PIBIA = A ‘PAUILLISIBP 10N = AN &

(9LAS-13W) pid)

92IN0S uogied

18l -180°¢¢ [olLpAIS|ASOULR (Y -188+'0) D '( 88 Gt'0) /A se |io ueaghos 1er - 91 AS 'ds pbpipup)
(eal0y
‘uoypul ‘Auedwiod 1}
apow yojeq paj 1eis Hd -UDWLIIR} BRIOY) 3J44eq N0 08-fdA bsouibniap
9l 18ovy pidijouweyy an "70S8|\ pue 9500N|D YU J9JUSWLIS) JBf 76 SDUOLIOPNSSH
(1¥08-201V)
lonbi| dsais 1 £20%-153D
44| 18w /z6°1L AN juepensolg DU JOPIO PUOIIS PUB JSIH-OPNSSd U100 pUB 1RIXD ISBIA 19juswIay uoylddy 7 ¢ snsojuad snjjopGoDT
(uemie] ‘1adie] DyuaRS
JoIS114) JojuaULLIR) 433r4
/11 18649 unoepns =S zgloo ety uogied pajeAIRy 1e[ -G [PUONUBAUOD DLV Siigns snjjiopg
(-8 86t0) A (88 2L2) VA syydowisay
-180t1 '(1-88 z1'0) A (.Y v62°0) M pue (8 8 ¢t0) A SN2202000)da.)S pue
oIl pue | 3c6g/1 juepeunsolg ATw 8w 187) X4\ ATm 8 21'0) /95 ‘(1Y £GT0) ¥ S9SSR|ON| lopealoig 7 | ¢G SIOD| SNJjIDDGODT
(SN 'IN "2ynuens
yo1myounig maN) 4oy 621-0l SQ psou
GlLL JTw 8w oze pidijouteyy anN ISpMOd 0dwia e’ -Uusulay QL1 mojjolg 1 G/ -1bnJap spuowopnasy
0In "2ynuans
asoon|n yoimsunig maN Ol L
‘yo1eq pa4 (*OSUN o|4oig) Jopealolq |-G pue
18w ¢85 ""0Se4 !|w 00Z/8W G "eD) (VSN ‘TN "24aus1dS im 551T
vLLL pue 13080 unoeHNg aN suol [e3a)y -sunig meN)) 121/18¢ DDLV Signs snjjog
(puepaziims
Buusauidugolg) 1828021
Sl -1886'9 an asoon|n 12JUBWIRY T £°¢ 000Z-4TM subjn2. snjjbg
s pansiyoe uopnpoid
RIEIEIEN uonpnpoid ewixepy sg jo adAL uoNeUIWISIdP So1RUIY Sg 1o} uoipNpul Jo INOS suonesadQ swssiue8i0001

Tenside Surf. Det. 54 (2017) 2

96



C. Sivapathasekaran and Ramkrishna Sen: Origin, properties, production and purification of microbial surfactants

tional source for the production of rhamnose from Pseudo-
monas aeruginosa [92]. The yield of 13.50 g L™! of lipopeptide
biosurfactant was observed when ammonium bicarbonate
(NH,HCO3) was used as nitrogen source [93]. The exhaus-
tion of nitrogen source creates stress conditions which allow
for high cell densities and this results in a better biosurfac-
tant yield during the fermentation process [81]. The regula-
tory of gene involved in nitrogen metabolism known as sig-
ma factor RpoN (6°4) which expresses more under nitrogen
limiting condition helps in improving the biosurfactant pro-
duction [82].

The C/N ratio is the critical factor and this was investi-
gated by using substrates as frying oil, as carbon source
and urea as nitrogen source. A wide range of the C/N ratio
(10:1; 70:1) were investigated and it was found that the
30:1 ratio gave a better biomass and biosurfactant yield
(2.80 g L7Y) [94]. Similarly, the rhamnolipid type of biosurfac-
tant (thamnose) was found at the ratio of C(glycerol)/N(so-
dium nitrate) of 60:1, which caused to increase the yield to
3.16 g L1 [95].

3.2 Kinetics of biosurfactant production

Biosurfactant production can be characterized as growth-as-
sociated, pseudo growth associated, non-growth associated
and mixed growth associated [19, 100, 101]. The characteris-
tic kinetic nature of the microbial production can be repre-
sented by various factors (Table 2) however, the Luedeking-
Piret (L-P) model, helps to define the production manner.
Thus the equation 1, for L-P model is given below,

Q,=op+p (1)

Q,: specific product rate formation; u: specific growth rate
and «, B: empirical constants.

3.2.1  Growth associated production

The specific product formation (Q,) rate is directly propor-
tional to the specific growth rate (jt). L-P model for this type
of production is given below in equation (2)

Q, =ap (2)

Most of the biosurfactant productions are reported to be
growth associated, which shows the relationship between
the growth, substrate utilization and biosurfactant concen-
tration. The production of lipopeptides form B. licheniformis
JE-2 [61] and Bacillus subitlis LB5a [101, 102] are great exam-
ples for a growth associated biosurfactant production.

3.2.2 Mixed growth associated production

The product formation takes places during the exponential
and stationary phase. In this case the L-P model has the
both empirical constant values which are given by equation
(3) below,

q, =op+p 3)

Biosurfactant production can also found to be pseudo meta-
bolite during the growth of the microorganisms. For exam-
ple, Bacillus subtilis produced surfactin in pseudo metabolic
phase [60, 83].
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3.2.3  Non-growth associated production

A non-growth associated product formation occurs at the
stationary phase when the growth rate is zero. The L-P mod-
el for this type of production is given in the equation (4)

q, =B (4)

The biosurfactant production which occurs in the stationary
phase will be considered as a non-growth associated produc-
tion. Biosurfactants from Pseudomonas sp. displayed the
non-growth associated production [103]. Mostly, the glycoli-
pid production from various microorganism and yeasts is
found to be non-growth associated [104, 105]. In advance,
the kinetics of the cell bound biosurfactant produced by Lac-
tobacillus pentosus were studied by a mathematical model of
pseudo first and second order kinetics for the extraction pro-
cess. The new dimension of this study describes the pseudo-
second order equation for fitting more accurately in relation-
ship with temperature and biosurfactant [122].

Despite their versatile advantages and diverse potential
applications, there is a limitation in the production at a com-
mercial level. By defining the kinetics derivations (Table 2),
the yield improvement issues are addressed by few statistical
and computational tools as well as fermenter process studies
as described below.

3.3 Fermentation processes:
Batch and Fed-batch/semi-continuous operation

Mostly biosurfactant productions have been carried out by
submerged fermentation [69-104] and rarely by solid state
[107, 108]. The mode of fermentation, biosurfactant yield ob-
tained from the different sources of microorganisms have
been tabulated (Table 2).

Fed batch approach for surfactin production from Bacillus
subtilis ATCC 21332 was enhanced by feeding a nitrogen
source thus yielded 439.0 mg L™! [91]. By feeding the nitro-
gen source for the glycolipid biosurfactant production from
Candida sp. SY16 yielded 37.0 g L1, whereas the residual oil
of soybeans acting as carbon source on fed batch operation,
yielded 95.0 g L' surfactin [118]. The pH fed batch mode
was performed for the production of rhamnolipid from
Pseudomonas aeruginosa, glucose was used as limiting
substrate which enhanced the yield from 1.68 gL to
440 g L7 [117].

A new approach has been described recently for the lipo-
peptides production from Bacillus circulans MTCC 8281. For
two different processes such as unsteady state fed batch op-
erations (higher and lower flow rates) it was demonstrated
how in this both processes a carbon source acted as limiting
substrate. The better yield of 6.21 g L' was obtained from
the lower flow rate process as compared to higher flow rate,
where the last one yielded 5.83 g L1 [119]. Recently, an inex-
pensive fed batch operation was performed by inducing the
foam formation and fractionation. The stability and binding
efficiency of the produced lipopeptides were investigated
with different metal ions with respective to pH conditions
[120].

A significant improvement in the marine biosurfactant
production from (3.30+0.10) g L to (4.20+0.10) g L'
was attained by feeding Fe?* trace element during the early
exponential stage, which is approximately 27 % [121].

The foam formation becomes the main bottleneck in the
submerged fermentation process for the biosurfactant pro-
duction. Controlling the foam formation or foam collected
though air exhaust pipe will get affected during the recovery
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process. To overcome this issue, an anaerobic way of the fer-
mentation process was studied for Bacillus licheniformis JF-2
[76], which was not explored further. However, the anaerobic
way of fermentation processes is recently explored. A surfac-
tin production from a foam-free anaerobic fermentation way
was demonstrated in a 2.50 L fermenter (Minifors, HT In-
fors, Bottmingen, Switzerland). Nitrogen gas was spraged
into the fermenter for the surfactin production from Bacillus
subtilis DSM10%. The obtained yield was 0.087 g L'l. The
kinetic parameters of this anaerobic conditions are: Ypx
(gg7) =0.278; Yys (g g7") = 0.120; Yps (g g') = 0.033 which
shows moderate comparable results with the aerobic fer-
mentation, described in the report [124].

The recent approach shows the fed batch process opera-
tion and its critical variables optimization using ANN-GA
model. Various feeding concentrations of asparagine (Asn),
glutamic acid (Glu) and proline (Pro) during the fed-batch
fermentation process were studied for yielding an improve-
ment of iturin A. The optimum yield of (13 364.50 + 271.30)
U mL™ was when using the ANN-GA model [141]. The pH
stat fed batch culture was demonstrated for rhamnolipid
production from Psedudomonas aeruginosa. The maximum
yield was 4.40 gL [164]. In continuous mode reactor
(CSTR) operation, maintaining the constant volume is very
difficult due to foam formation and the foam itself a pro-
duct. However, the attempt has been done and described
various strains using CSTR [124].

3.4 Bioprocess optimization: Statistical and ANN modeling
based methodologies

A prime approach applied for obtaining increased yields in
the fermentative production is by medium and process opti-
mization. The most effective statistical methods used for
bioprocess modeling and optimization for yield enhance-
ments are single-variable at a time experiments [60, 83],
Plackett-Burman Design [112, 123], Taguchi Experimental
Design [126], Fractional Factorial Design [86, 127, 128], Re-
sponse Surface Methodology [126—130]. Similarly, a new ap-
proach has also been made on computational tools, artificial
neural network modeling and genetic algorithm [134-136).

3.4.1 Single variable at a time experiments

The critical components of the medium that influence the
production processes are identified by the single-factor-at-a-
time optimization strategy. The experiments (n-1), n-single
variable, will be designed by leaving out one of the compo-
nents present in the medium, keeping all other constant. Ef-
fect of different critical components and their ranges, which
influence the production can be identified by these experi-
ments. This experimental strategy was first adopted for the
optimization of the surfactin production from Bacillus subti-
lis [60, 83, 112]. A similar kind of study was reported by sev-
eral authors for the biosurfactant production [129-133].

3.42  Plackett-Burman design

The Plackett-Burman design is a well-established and widely
used tool for screening the medium components [104]. Sev-
eral nutrient components and trace elements are reported to
affect the biosurfactant production. Two-level fractional fac-
torial design and Plackett-Burman design, can screen up to
n-variables with n+1 experiment, while the multifactor de-
sign will be difficult because more experiments are needed.
The experimental designs help to screen the critical vari-
ables with a lesser number of experiments. This design was
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adopted to screen nearly 14 nutritional components and
their effects on the biosurfactant production from Bacillus
licheniformis were described previously [118]. Among the
14 nutritional components, the following 8 components
Cac12, I‘I}PC)4y H}BO}, CU.SC)“_y ZnSO4, FeSO4, COC12 and
Na-EDTA, were found to be more important in biosurfactant
production. Using Box-Behnken design the critical compo-
nents and their concentration were found to be: H;PO,
(1.0 ml L), CaCl, (0.27 mg L), H3BO; (0.25 mg L), Na-
EDTA (30.0 mg L™!) [118]. On the other hand, eleven nutri-
ents were screened for the biosurfactant production from
marine Bacillus sp. and from these five components were
found to be important for the production Glucose, NH,NO,
K,HPO,, MgSO, - 7H,0, KH,PO,, FeSO, - 7H,0 [112]. Itur-
in A and surfactin, two variants were derived from Bacillus
subtilis S499, ten active variables were optimized by two suc-
cessive ways by this design (12 and 16 experiments design)
[165].

3.4.3  Taguchi experimental design

Applying the Taguchi experimental design, a standard ortho-
gonal array of L, Lyg, L7 and Lsg (N®*1) is used to examine
the experimental design. The analysis of the design is per-
formed using a statistical method; the analysis of variance
(ANOVA). The Taguchi experimental design is a positive op-
tion for the optimization of the biotechnological processes
however, the model is very complex. The critical influence
of trace elements such as Mg?*, K*, Mn?* and Fe?* on the
surfactin production from Bacillus subtilis ATCC 21332 was
explored by using this design. The critical parameters were
found to be Mg?* and K* which have been optimized for the
enhanced surfactin yield of 3.34 g L' [116].

3.4.4 Fractional factorial design

Factorial design can be used for screening the media compo-
nents and their significant factors. The interactions between
the variables will be determined by R-n factors. Fractional
designs are expressed using the notation 1P, where “I” is
the number of levels of each investigated factor, “k” is the
number of investigated factors, and “p” describes the size
of the fraction of the full factorial. The use of this model in
biosurfactant research is scarce. The optimization of biosur-
factant production from probiotic bacteria [92] and the bio-
surfactant production from Yarrowia lipolytica have been de-
scribed earlier [128]. The optimization of biosurfactant from
Yarrowia lipolytica have been measured by an indirect way of
defining the EI value (81.30%) and the surface tension value
(19.50 mN m™). The effects of aeration, agitation, and the
carbon and nitrogen sources were also studied using this
method [128].

3.4.5 Response surface methodology

Response surface methodology (RSM) consists of a group of
empirical techniques that explores the relationship between
the independent variables and output values. This method is
employed with multiple regression analysis by using quanti-
tative data obtained from the properly designed experiments
to solve multivariate equations [137]. Thus the performance
measure is called the response and the input variables are
sometimes called independent variables. In terms of the
coded variables the response function is given in equation

(5)
Y = (X1, X, ... X4 (5)
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£, is the true response which will be a function of first or sec-
ond order polynomial quadratic model. The second order
polynomial function is widely used in the response surface
methodology for several reasons like a very flexible method
of least square which can be used for this purpose and it
works well in solving response surface problems. The em-
pirical equation of the second order polynomial function is
given in equation 6.

k K kK k
Y =P+ Z Bix; + Z Bjj%jz + Z Z Bixixi (6)
=1 =1 i=1 =1

RSM has been used to optimize the critical process variables
for enhancing the biosurfactant production. The design ma-
trix for the critical medium components such as glucose
(C¢H1,04), ammonium nitrate (NH4,NO;), manganese sul-
phate (MnSO,) and iron sulphate (FeSO,) were generated
using a 2* full factorial central composite design and the
optimization was performed using a Monte-Carlo algo-
rithm for the enhanced biosurfactant production (CMC™!
45.50 mol L7, indirect yield measurement of surfactin) from
Bacillus subtilis [83]. Medium components such as waste free
fatty acid as carbon source, sodium nitrate (NaNOs), phos-
phate and FeSO, were considered as critical components, in-
fluencing the biosurfactant production. The design matrix
for these components was generated using a 2* full factorial
central composite design and a optimization was performed
using Essential regression software for the enhanced rham-
nolipid production (12.06 g dm~3) from Pseudomonas aerugi-
nosa AT10 [133]. Similarly, the critical medium components
were optimized for the biosurfactant production from Pseu-
domonas aeruginosa S2 [133] and the lichenysin production
from Bacillus licheniformis R2, the critical components of
NH,NO;3, glucose, Na,HPO, and MnSO, - 4H,0 were opti-
mized [129]. On other hand, the critical medium compo-
nents of sucrose (g L™!), ammonium chloride(g L), ferrous
sulphate (uM), Zinc sulphate (mM) were identified and opti-
mized to enhance the yield of novel lipopeptide (1.712 g L)
from Bacillus subtilis MO-01[127].

The RSM technique was also applied to study the effect of
two stages of inoculum; (i) inoculum age and (ii) inoculum
size. These were optimized using a Monte-Carlo algorithm
for the enhanced surfactin production from Bacillus subtilis
DSM 3256 [138]. Briefly, the first stage of inoculum size
was 5.50% v/v, a 56.0 h fermentation age followed by second
stage of inoculum size of 9.50% (v/v) with 4.50 h of age,
helped in the higher surfactin concentration of 1.30 g L™!
[138].

In our recent study, the first approach has been made to
optimize the critical medium components of modified mar-
ine medium (MMM) for the higher yield achievement of
3.05 g 7! lipopeptide from marine origin, Bacillus circulans
MTCC 8281 [132]. The expansion of this model is also ap-
plied to study the effect of salinity, pH, and temperature on
the surface active properties of biosurfactant. The second or-
der factorial design was applied to generate the experimental
matrix whereas a Box-Behnken algorithm was used to define
the optimal conditions (T = 30°C, salinity = 3.0%, pH > 5.0
for better emulsification properties) of the biosurfactant pro-
duced from Lactobacillus pentous [78].

These statistical tools have also been applied for the pro-
cess optimization in fermenters to optimize the critical pro-
cess parameters such as stirrer speed (RPM), aeration
(LPM), temperature, pH, etc. Thus, the importance to opti-
mize the process conditions in order to maximize the pro-
duct yield at very low cost is high [19, 39, 60]. For example,
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the process variables such as temperature, pH, aeration and
agitation have critically influenced the biosurfactant produc-
tion in the reactor [60]. The process variables were optimized
(aeration: 0.75vvm; agitation: 140 rpm; pH=6.75; T=
37.4°C) using a multi stage Monte-Carlo algorithm for the
enhanced surfactin (1.10 g L! with relative concentration of
53.0 CMC™) production from Bacillus subtilis DSM 3256
[60]. The main drawback of RSM is that the optimization is
confined to the quadratic non-linear model whereas biologi-
cal process consisting of many complex non-linear patterns.

Other modern computational modeling and optimization
tools such as artificial neural network coupled with genetic
algorithm (ANN-GA) can also serve as powerful aids for bio-
process optimization to augment biosurfactant production
[133-136].

3.4.6 Artificial Neural Network modeling (ANN)
and Genetic algorithm (GA) optimization

ANN, a mathematical and computational tool, is a collection
of interconnecting the independent process variables (input)
and dependent variables (output) without any prior know-
ledge of the relationship between them. In 1989, Golden-
berg, introduced this genetic algorithm, a globalized optimi-
zation technique which searches the global optima value of
a complex objective function obtained from ANN by repro-
duction of the biological process such as genetics, crossover
and mutation [139]. The first report on ANN-GA based opti-
mization tools was aimed to optimize the critical medium
components for the enhanced lipopeptide production from
Bacillus subtilis MO-01 [136]. Later, the same tool was
adopted for the medium optimization for the biosurfactant
production from Rhodococcus erythropolis MTCC 2794 [131].
On other hand, four media components (sucrose, yeast ex-
tract, meat peptone, toluene) were optimized and the yield
of 7.20 g L' was achieved, which increased in 3.5 fold
[133]. Recently this computational approach had been
adopted first time for the marine medium optimization in
order to improve lipopeptide biosurfactant production from
marine isolate Bacillus circulans [135]. Glucose, Urea, SrCl,
and MgSO, were optimized using ANN-GA which enhanced
the biosurfactant yield upto (4.40 +0.5) g L, which is a
70.0% enhancement in the yield [135]. Same approach was
applied to optimize the process parameters (pH, tempera-
ture, aeration and agitation) in a 3.7 L bioengineering fer-
menter [116]. By optimizing the process parameters, the
yield enhanced to (6.98 + 0.14) g L™! from (4.61 + 0.07) g L,
an overall 52.0% achievement was shown [116]. The recent
study shows an ANN modelling coupled with PSO (particle
swarm optimization) algorithm served as tool for optimizing
the process variables of pH=6.7, T=33.30°C, aeration
128.0 L h™! and agitation 458.0 rpm which achieved a lipopep-
tide yield of (6.58 + 0.32) g L™! from Bacillus megaterium using
food waste [140].

4 Characterization of the Biosurfactants
41 General analysis

The preliminary qualification and characterization of the
biosurfactants have been identified by using the basic pro-
cess of surface tension (ST) measurement (tends to form
the vesicles which lowers the ST), interfacial tension mea-
surement (intramolecular attractive force happens within
the molecules), determination of the critical micelle concen-
tration (CMC™' lower the CMC level lead to monomer for-
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mation), the critical micelle dilution (CMD}, dilution of bio-
surfactant in aqueous solution), the drop-collapse method
(micro plate, oil coated based test, based on the shape detec-
tion) and emulsification index measurement (E,, = height of
emulsion layer/height total liquid layer) [27—-143]. The Lipo-
peptide quantification using the Bradford method have also
been demonstrated. In the case the lipopeptide is not solu-
ble in the Bradford reagent, it is advised to add an equal
amount of 1.0 M NaOH for the solubility, which helps to de-
tect and quantify the lipopeptide content [145]. Similarly,
glycolipids are quantified by a color based method, by
anthrone or ornical test. The intensity of the color is mea-
sured at the absorbance of 625 nm to quantify the glycoli-
pids against the standard plot (generated using rhamnose
or rhamnolipid). On the other hand, the biosurfactant/bio-
emulsifier contains protein-lipid complexes which are gener-
ally quantified by the folin phenol method, as described pre-
viously [146]. Recently, a new simple turbidometric method
has been developed to quantify the crude biosurfactant in
the concentration range of 1.0 to 10.0 g L of the turbidity
ranges [144]. The presence of the total fatty acid methyl ester
content can be analyzed by GC-MS by using capillary col-
umn [148] and recently with ZB-WAX column, with the m/
z range of 40—400 which also helps to define the quantifica-
tion of biosurfactants [147].

4.2 Specific analysis

The identification pattern and chemical nature of the biosur-
factants will be determined by high performance thin layer
chromatography (HPTLC) [25, 26]. However, the concentra-
tion of the biosurfactants can be easily determined by this
method with a lesser amount of sample [28]. Fourier trans-
form infrared spectroscopy (FTIR) helps to reveal the chem-
ical bonding nature of the biosurfactant and helps also in
predicting the structure in correspondence with HPLC,
MALTI-ToF and NMR data. The chemical bonding nature
of the lipopeptides (fengycin and surfactin), derived from
marine origin were determined by C-O, C=0 (stretching vi-
bration) (1260 cm™ and 1900 cm™), aliphatic C-H group
(1390 cm™) which corresponds to the lipid portion and the
presence of NH (1590 cm™) bond represents the peptides
[28]. The spectral analysis of the biosurfactant shows the
presence of peptides by N-H (IR range: 1500 cm™), stretch-
ing and O-H of carboxylic acid along with presence of CH,
and CH; group of aliphatic chains [147]. The partial charac-
terization of the new isoform of biosurfactant, glycopeptide
or glycolipopeptide and its infrared analysis has been re-
ported recently. The infra ranges were observed for chemical
structures and are described by the wave number: OH and
NH stretching at 3200—3600 cm™, C-H (stretching) group
CH, and CHj at 2900-2950 cm™, C=0O at 1752 cm™,
1675 cm™, N-H bending of protein at 1520 cm™!, C-H bend-
ing vibration of CHj; and CH, group, CH (Scissor) at
1400 cm™'-1460 cm™, OH deformation vibration/CN at
1100 cm™-1090 cm™ and C-O sugar stretching at
1000 cm™-1300 cm™ [48, 122].

High performance liquid chromatography (HPLC) is
mainly used to analyze and separate the isoforms which
are present in the crude mixture of biosurfactants. This is
is not possible in any other analytical method [5, 26]. A com-
petent method has been developed for the isoform analysis
and separation in HPLC with a short retention time
(60.0 min run method to 20.0 min method) as described
previously [27]. The functional groups present in the mole-
cules are determined by Fourier transform infrared spectro-
scopy (FTIR) and by mass spectral analysis using a Mass as-
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sisted laser desorption ionization time of flight (MALDI-
ToF) [5, 7, 27, 36, 52-63, 140]. However, fast atom bombard-
ment mass spectrometry (FBAB) also revealed the presence
of [M+H*] and [M+Na*] quasi molecular ions in the mixture
surfactin analogs derived from marine Bacillus pumlimus
[69]. Similarly, three isoforms of the lipopeptides surfactin,
baccilomycin D and fengycin produced from Bacillus amylo-
liquefaciens strain FZB42 were identified by MALDI-ToF-MS.
The isoform of surfactin was defined by the chain length of
Ci3, Ci4 and Cy5 with the molecular mass ions of [M+ Na,
KJ*, baccilomycin D with the chain length of Cy4, Ci5 and
Cy6 having the ions of [M+H, Na, KJ*, however, C;, has the
mass ions of [M+Na, K]*. Similarly, fengycin was identified
in the presence of amino acid Ala-6-Cs, Ala-6-Cy¢, Ala-6-Cy;.
Val-6-Cy¢, Val-6-Cy; with the uniform mass ions of [M+H,
Na, KJ* [63].

On other hand, nine different homologous of surfactin
and lichenysin were identified using the electrospray ioniza-
tion mass spectrophotometry (ESI-MS) coupled with a thin
layer chromatography [73]. Four variants of fengycin (Frac-
tion A to D) with C;4 and C;; chain length with Na*,H*, K*
adducts in protonated form [27] and two variants of surfactin
(Fraction E and F) were identified by HPLC combined with
MALDI-ToF, the chain length of C;4, Ci5 and C;g with the
molar mass of Na* and K* ions in protonated forms. Both
the fraction of E and F were identified as new variants of
surfactin family [162]. The detailed structure and biological
applications of surfactin have been described previously
[56, 75].

5 Purification

The production of biosurfactants has been enhanced by var-
ious optimization strategies, nevertheless, still the purifica-
tion remains a major challenge due to high downstream
processing cost (~ 60.0%) and purity requirements [39,
47]. To address this factor, few attempts have been made to
improve the purification strategy for biosurfactants. The
purification of the molecules has been employed by differ-
ent ways: Biosurfactants purification with lesser quantity
has been achieved by using high performance liquid chro-
matography (HPLC) [26, 27, 149] and purity of these mole-
cules have been identified by critical micelle concentration
values (CMC) [27]. The purified lipopetide isoforms (CMC
values for isoforms A: 10.0mgL' B: 12.0mgL™, C:
13.0 mg L7; D: 13.0 mg ') obtained with a HPLC method
showed a purity which is greater than 85.0% [26]. On the
other hand, the rhamnolipid purification was performed
using HPLC [147]. Similarly, the biosurfactant purification
has also been achieved by thin layer chromatography (TLC)
and is evaluated by CMC values [26, 28, 150]. Further the
purification of the biosurfactant at a commercial level has
been achieved by size exclusion chromatography using
Sephadex G-50 matrix. [25, 151].

Ultrafiltration is the robust method for determination of
the concentration and the purification of the biosurfactant
which is evident from the previous reports [57, 149, 157].
Briefly, the surfactin concentration as well as the purifica-
tion has been achieved with different cutoff membranes
such as XM-50 [57], Biomax 10 kDa [149], PS 30 kDa, YM
30 kDa [150, 152] and cellulose membranes [154]. The stan-
dard surfactin, having a 98.0% purity (Sigma, USA) showed
the CMC value of 13.0 mg L™ whereas the CMC value of
surfactin obtained from Bacillus subtilis was 17.0 mg L}, a
purity of 70% was achieved using an ultrafiltration process
[57]. A dual gradient elution strategy has been employed.
The adsorption effect of lipopeptides on four different resins
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followed by step wise elution of their families (iturin, fengy-
cin and surfactin). The eluted molecules are analyzed and
confirmed by HPLC [156]. Ca,* conditioned mode of diafil-
tration studies have been performed and reported recently
[157].

6 Immense Application Possibilities of Biosurfactants
6.1 Therapeutics activities and applications

Therapeutic activities of these molecule are described based
on their chemical structure [15, 17-20, 163]. The descrip-
tion of the biological activities of the different biosurfactant
has been shown in Table 3. Briefly, the biological activities of
cyclic lipopeptides (CLPs) produced by Pseudomonas aerugi-
nosa showed an antagonistic activity against two pathogenic
fungi with the maximum inhibition of (2.30 + 0.6) mm, and
(1.70 £ 0.6) mm [109]. The biosurfactant from Bacillus circu-
lans was purified by gel filtration chromatography which de-
livered better antimicrobial activities against five different
Gram negative and three Gram positive pathogenic bacteria
as well as three fungal strains. The disc diffusion test was
performed for crude and gel purified biosurfactant however,
the higher activity was observed around > 21.0 mm halo di-
ameter against Gram negative bacteria [26]. Similarly, fengy-
cin from Bacillus circulans was purified by a HPLC method,

and showed strong antimicrobial activities against one
Gram-positive and six Gram negative bacteria with the max-
imum halo diameter of (17.0 £ 0.2) mm [27]. Lipopeptides
from Bacillus subtilis natto TK-1 also displayed antimicrobial
activities. The maximum zone of inhibition was observed
against bacteria (18.0 mm) and fungi (48.80 mm) [158]. The
Gram positive and Gram negative pathogenic bacterias were
collected from different sources of human bodies and waste;
such as urine, nose wound, finger wound, vaginal secretion,
hemoculture, orofaringe secretion, traqueal and abdominal
secretion. These samples were tested for antimicrobial activ-
ity against lipopeptide biosurfactant produced from Bacillus
subtilis R14. The maximum inhibition of (28.20 + 0.1) mm
was observed against Gram positive bacteria [159].

On the other hand, the excellent antimicrobial activity has
been shown by rhamnolipid against three Gram positive
and two Gram negative bacteria with the maximum inhibi-
tion of (30.0 + 3.0) mm [157]. A biosurfactant from Lactoba-
cillus paracasei ssp. paracasei A20 showed potential antimi-
crobial activities against Gram positive and negative
bacteria and fungi, collectively of eighteen microorganisms.
The minimum bactericidal concentration was observed in
the range from (71.60+1.5) mm to (100.0 +0.0) mm
against all tested microorganisms [161]. Similarly, the anti-
fungal properties of iturin A and surfactin have been dis-
cussed in previous reports [85]. Likewise, two isoforms (Frac-

Types of Biosurfactant Source Active properties Detection method Refer-
and applications ences
Surfactin Bacillus subtilis Fibrinolytic/blood clotting Thrombin-fibrinogen system 67
activity
Biosurfactant (ND) Lactobacillus paracasei ssp. Antibacterial and antiadhesive Micro dilution method in culture 161
paracasei A20 plates and staining method
Rhamnolipid Pseudomonas aeruginosa Antibacterial activity Serial dilution and plating method 160
MROT
Lipopeptide Bacillus licheniformis M104 Antimicrobial Agar disc diffusion method 166
Cy4 and C;5 Surfactin Bacillus amyloliquefaciens Antifungal activity Micro well plate method 167
MB199
Surfactin Bacillus subtilis 573 Antitumor activity Cell culture based assay 170
Surfactin Bacillus natto KMD 2311 Antitumor activity Cylinder plate method 180
Lipopeptide Bacillus subtilis O9 Hemolytic activity Dilution method 171
Lipoeptide Bacillus subtilis ATCC 6633 Hemolytic activity Hemolysis assay 179
Biosurfactant (ND) Candida lipolytica Antimicrobial and antiadhesive 96 well plate method 172
UCP 0988
Biosurfactant (ND) Lactobacilli isolate Antimicrobial and Antiadhesive ND 173
Lipopeptide Bacillus circulan Antiadhesive Antiadhesion assay 174
Biosurfactant Bacillus circulans Bioavailability and Test tube method 11
biodegradation
Biosurfactant Marine bacterium Heavy metal remediation Dilution method 13
Sphorolipids (SLs) Candida bombicolo Foaming and washing test; Ross-Miles method and Associa- 175
Cytotoxicity tion of washing chemistry founda-
tion test. MTT method
Rhamnolipid Pseudoxanthomonas sp. Degradation of aromatic UV analysis method 176
PNK-04 compounds
Rhamnolipid Pseudomonas aeruginosa Arsenic removal and heavy Capillary electrophoresis column 177
JBR425 metals experiments
Mannosylerythiol lipids Novel isolate Pseudozyma Laundry and detergent Fabric wash method 178
(MELSs), glycolipid sp. NIl 08165 additives
Table 3 Immense commercially attractive properties and application of various biosurfactants in different fields
Tenside Surf. Det. 54 (2017) 2 101




C. Sivapathasekaran and Ramkrishna Sen: Origin, properties, production and purification of microbial surfactants

tion E and F) which belong to the surfactin family displayed
an antimicrobial activity. There is no activity found from
both isoforms against one of the Gram positive bacteria of
Micrococcus and no activity was found from isoform F,
against one of the Gram negative bacteria, Klebsiella aeroge-
nus. The higher activity was found to be (14.0 £ 0.6) mm
from the fraction E against Gram positive bacteria [161].
The C;, and C;5 surfactin showed a synergistic effect on
antifungal properties against Candida albicans SC5314 with
KTC at the MIC of 12.50 ygml™! (Cy4 surfactin) and
6.25 pg ml™! (Cy5 surfactin) [167].

The trehalose lipid biosurfactant (TLB) from Rhodococcus
sp. displayed a 100 % hemolysis activity which was obtained
at a TLB concentration of 40.0 uM, which is well below its
CMC value. Further colloid-osmotic mechanisms defined
upon the addition of TLB, K* release the hemoglobin in ad-
vance which causes the hemolysis of human erythrocytes by
a colloid—osmotic mechanism [171]. However, the first non-
hemolytic properties of a lipopeptide biosurfactant derived
marine Bacillus circulans has been studied based on blood
agar plate method [26]. The anti-adhesive property of the
biosurfactants has been described in several reports [155,
158, 172—174]. The adhesion of the cells along with lipopep-
tide was detected at the least concentration of 0.10 g L!
[172].

Biosurfactant molecules are reported for anticancer activ-
ities with the preliminary strong studies [158—163]. The effect
of surfacin against LoVo cancer cell lines has been studied.
LoVo cells, a human colon carcinoma cells proliferation was
blocked strongly by surfactin which was examined by a MTT
assay. The time and dose dependent study revealed the activ-
ity of surfactin by an ICs, value of 26.0 pM at 48 h incubation
[89]. New cyclic lipopeptides (CLPs) from Bacillus subtilis nat-
to T-2 displayed a dose dependent inhibition against human
leukemia K562 cells. The experiment was performed through
a MTT assay followed by fluorescent staining of nuclei of
K562 to detect the inhibitory effect. The accumulation of the
cells in G1 phase and also the number of apoptotic cells in-
creased with respect to the concentration of CLPs (36.50%
for control and 57.60% for 32.0 ug mL™? of CLPs at 24 h)
[168]. Similarly, rhamnolipids from Pseudomonas aeroginosa
B189 showed anticancer activities against human breast can-
cer cell line, MCF-7. Two types of rhamnolipid probably iden-
tified as rhamnolipid A (L-rhamnopyranosyl-L-rthamnopyra-
nosyl-b-hydroxydecanoyl-b-hydroxydecanoate or Rha-Rha C;4-
Cyo and rhamnolipid B (L-rhamnopyrano-syl-L-thannopyrano-
syl-b-hydroxydecanoyl-b-hydroxydodecanoate or Rha-Rha C-
Cy,) showed potential antiproliferative activity: The MIC was
found to 6.25 pg mL™! for rhamnolipid A against human
breast cell line MCF-7, whereas rhamnolipid B exhibited the
MIC of 50.0 ug mL™! against insect cell line C6/36 [169].
However, recently a report described the first attempt for an-
ticancer studies of the marine lipopeptides surfactin and fen-
gycin and showed the combined potential activities against
the colon cancer cell lines HCT-15 and HT-29 with the ICs,
value of 80.0 ug mL™! and 120.0 pg mL™ respectively [28].

Recent work described about the anti-tumour activity of
surfactin produced by Bacillus subtilis 573 and a glycoprotein
(BioEG) produced by Lactobacillus paracasei subsp. paracasei
A20. Two biosrufactants were tested against three cell lines,
among the three two were breast cancer cell lines (T47D and
MDA-MB-231) and the third served as control cell line (MC-
3 T3-E1), non-tumour fibroblast cell line. The first report de-
scribed the BioEG activity against the cancer cell line and
found to be more potent at the concentration of 0.15 g L7,
and the decrease of the cancer cell viability without affecting
the normal fibroblast [170].
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6.2 Commercial application

Commercial applications of these molecules are described
based on their physiochemical properties (Table 3).

Sophorolipids (SLs) derived from non-pathogenic yeast
Candida bombicola was examined for the interfacial activ-
ities. The results were extremely low-foaming properties
and high detergent activity in 100 ppm hardness of water.
This study was performed using commercial detergents
(black-copolymer nonionic surfactant and polyoxyethylene
lauryl ether (AE)) and two lipopeptide biosurfactants (surfac-
tin and arthrofactin) were used as detergent additives.

On the other hand, biodegradability of SLs along with
other surfactants are also tested according to OECD guide-
lines. The result declared that SLs can be readily used as
quick biodegradable agents [175]. Novel sophorolipids (SLs)
displayed a lower cytotoxicity activity against human epider-
mal keratinocytes which helped to design the cosmetic pro-
ducts [175], skin inflammation can be ruled out by this prop-
erty.

Rhamnolipid produced from Pseudoxanthomonas sp.
PNK-04 showed a greater solubility and degradation effect
on aromatic compounds such as 2-chlorobenzoic acid, 3-
cholorobenzoic acid, 4-cholorobenzoic acid, pentachlorophe-
nol, hexachloro benzene, 1-methyl naphthalene and 2-
methyl naphthalene [176]. Similarly, a rhamnolipid derived
from Pseudomonas aeruginosa JBR425 displayed excellent
properties of arsenic contamination removal from the soil
by column flushing method. The oxidized Pb-Zn mine tail-
ing samples were collected from Bathurst, Canada and sub-
jected to arsenic and heavy metal removal. The mobilization
of arsene by rhamnolipid was enhanced by the presence of
other metals, which convert the arsenic ions into an aqueous
phase with the correlation coefficient range from 0.8915 to
0.9214 [177]. However, the biosurfactants also exhibit the
properties of heavy metal remediation by metal sorption
studies: 100 ppm of lead and cadmium could completely re-
moved at 5-fold CMC concentration level. In-depth studies
were carried out to reveal the properties using FTIR, atomic
adsorption spectroscopy and transmission electron micro-
scopy [13].

The same biosurfactants showed excellent biodegradation
properties against a polyaromatic hydrocarbon (PHA), an-
thracene. The solubility of 0.20% (w/v) anthracene and its
utilization by marine bacterium during the biosurfactant
production was examined by gas chromatography, high per-
formance thin layer chromatography and FTIR [11].

A combination of three mannosylerythritol lipids (MELSs)
along with few unknown glycolipids derived from a novel
isolate of Pseudozyma Sp. NII08165, removed stains (goat
blood, ketchup and chocolate sauce) efficiently and can be
served as potential candidate for the laundry industry. Fabric
wash analysis was performed at three different conditions,
with commercial detergent (Surf excel), with glycolipid and
with a combination of the glycolipid and the commercial de-
tergent. Among all the three studies, surf excel + crude bio-
surfactant (glycolipid) cleared all the stains in higher per-
centages (goat stain: ~97.0%; ketchup: ~90.0%,; chocolate
sauce: ~ 85.0%) compared to individuals. This study re-
vealed that this type of biosurfactant can be used in laundry
industries as additives [178]. However, the theory for the
antifoaming and defoaming has been described by the role
of emulsion and pseudo emulsion film stability. On the
other hand, the defoaming property has been studied by
using ultrasonic waves [184]. These theory and studies helps
to design a commercial product.
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6.3 Nanotechnology

The application of these molecules started breeding in nano-
technology research. The basic structures of these molecules
have the advantage of nanocomposites which helps in form-
ing nanoparticles [55, 182—183]. The lipopeptides fengycin
and surfactin derived from Bacillus subtilis are found to be
non-toxic and highly efficient diffusing mediators for carbon
nanotubes, they act as biocompatible agents [183].

7 Conclusion and Perspectives

Recently, lipopeptide gained attraction in medical research
fields due to its high anticancer, antifungal and antibacterial
activities such as therapeutic. Comparatively, rhamnolipid,
which is known for biodegradation applications, also exhib-
ited anticancer activities. Actually lots of new research di-
mensions and development is going in marine biosurfac-
tants research. Few unique properties were found from the
marine biosurfactants, such as non-hemolytic activities, an-
ticancer activities, better physiochemical activities as com-
pared to the terrestrial derived products. Initial kinetics and
production process for these molecules have been explored
in few research papers which set the benchmark for the pro-
duction process. Although there are bottlenecks in scale-up
of the production process, is also addressed with various ef-
ficient statistical and computational models. Enough infor-
mation has been provided in this paper for exploring the ki-
netics and production of biosurfactant at a commercial level.
Advanced analytical techniques are developed for quantifica-
tion and qualification studies such as the simple turbiodo-
metric method, and shorter methods in HPLC and HPTLC.
Purifications of the biosurfactants on a commercial scale are
done by gel filtration chromatography. Enough detail discus-
sions are captured in this review article by sketching the in-
formation provided by assorted researchers which helps for
the new researcher communities.

The emergence of biosurfactant molecules in nanotech-
nology attracts markedly the researchers’ attention because
these molecules can be used as biocompatible agents that
may help in nano-tissue engineering.
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