Home Physical Sciences Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
Article
Licensed
Unlicensed Requires Authentication

Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions

  • Jorge Aburto , Daniel M. Márquez , Juan C. Navarro and Rafael Martínez-Palou
Published/Copyright: July 22, 2014
Become an author with De Gruyter Brill

Abstract

Water/oil emulsions are formed in oil wells due to the presence of natural surfactants. As water/oil phase separation is necessary before oil refining, demulsifiers are used to break water/oil emulsions. In this work, environmentally friendly ionic surface-active choline carboxylates were synthesized from anionic exchange involving choline chloride under microwave dielectric heating. Microwave irradiation was also employed as a fast method for following the kinetics of the demulsification process with the synthesized demulsifiers. Choline palmitate showed the best performance as demulsifier.

Kurzfassung

Wasser/Öl-Emulsionen werden in Ölquellen aufgrund anwesender natürlicher Tenside gebildet. Da vor der Mineralölverarbeitung eine Phasentrennung von Wasser und Rohöl erforderlich ist, werden die Wasser/Öl-Emulsionen mit sog. Spaltern gebrochen. In dieser Arbeit wurden umweltfreundliche ionische oberflächenaktive Cholincarboxylate aus anionischem Austausch von Cholinchlorid bei dielektrischer Erwärmung mittels Mikrowellen synthetisiert. Die Mikrowellenbestrahlung wurde auch als schnelles Verfahren zur Verfolgung der Kinetik des Demulgierprozesses mit den synthetisierten Demulgatoren eingesetzt. Cholinpalmitat zeigte die beste Leistung als Demulgator.


* Correspondence address Prof. Dr. Rafael Martínez-Palou, Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730 México, D.F., México, Tel.: +525591757846, Fax: +525591558368, E-Mail:

Dr. Jorge-Arturo Aburto-Anell He holds a B.Sc. in Food Chemistry from the National University of Mexico; the M.Sc. and Ph.D. from Toulouse National Polytechnique Institute, France; and was visiting Researcher in the Biotechnology Institute from the Agricultural University of Vienna, Austria.

Dr. Jorge Aburto is Researcher at the Mexican Petroleum Institute since 2000 and is actually Project Leader of Bioprocesses. Dr. Aburto's main Research areas are petroleum biorefining, enzyme kinetics, precipitation inhibitors of asphaltenes, bioreuse of spent catalyst, production of lignocellulosic ethanol and petroleum transport through O/W emulsions. He is Authors of several international articles, book chapters, and patent applications.

Daniel Martín Márquez Chemical Engineering, Instituto Politécnico Nacional, 2006–2011. He did his professional graduate thesis at Insituto Mexicano del Petróleo under the direction of Dr. Rafael Martínez-Palou.

Juan Carlos Navarro Chemical Engineering, Instituto Politécnico Nacional, 2006–2011. He did his professional graduate thesis at Insituto Mexicano del Petróleo under the direction of Dr. Rafael Martínez-Palou. He work as engineer in PEMEX (Petróleos Mexicanos Company).

Rafael Martínez Palou He holds a B.Sc. in Chemistry from the Habana University in Cuba; the M.Sc. and Ph.D. from Instituto Politécnico Nacional of México and one year as Posdoctoral as researcher in the Instituto Mexicano del Petróleo were he work since 2002 as researcher and Project Leader on applied organic synthesis of product for Petroleum Industry.

Dr. Martínez-Palou's main Research areas are petroleum biorefining, petroleum transport through O/W emulsions, microwave and ionic liquids applications for oilfield. He is authors of more than 40 international articles, books, book chapters, and patent applications. He is Editorial Advisory Board Member of the journal Current Microwave Chemistry (CMIC) since 2013.


References

1. Schramm, L. L.: In Emulsion Fundamentals and Applications in the Petroleum Industry. Schramm, L. L. (Ed.) American Chemical Society, Washington DC, 1992, pp. 145. DOI: 10.1021/ba-1992-0231Search in Google Scholar

2. Kokal, S.: Petroleum Engineering Handbook: General Engineering, FanchiJ.R. (Ed.). Society of Petroleum Engineering, Richardson, Texas, 2006, pp. 533570.Search in Google Scholar

3. Kokal, S.: Crude-oil Emulsions: A-State-of-the-Art Review, SPE Prod. Facil.2005, February, 5–13.Search in Google Scholar

4. Zaki, N. N., Carbonell, R. G. and Kilpatrick, P. K. A.: Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide, Ind. Eng. Chem. Res.42 (2003) 6661. DOI: 10.1021/ie0303597Search in Google Scholar

5. Feng, X., Xu, Z. and Masliyah, J.: Biodegradable Polymer for Demulsification of Water-in-Bitumen Emulsions. Energy Fuels23 (2009) 451. DOI: 10.1021/ef800825nSearch in Google Scholar

6. Peng, J., Liu, Q., Xu, Z. and Masliyah, J.: Novel Magnetic Demulsifier for Water Removal from Diluted Bitumen Emulsion. Energy Fuels26 (2012) 2705. DOI: 10.1021/ef2014259Search in Google Scholar

7. Rogers, R. D. and Seddon, K. R.: Ionic Liquids: Industrial Applications of Green Chemistry. American Chemical Society, Washington DC., 2002. DOI: 10.1007/978-94-010-0127-4Search in Google Scholar

8. Martínez-Palou, R. and Flores, P.: Perspectives of Ionic Liquids for Clean Oilfield Technologies, Kokorin, A. (Ed.), in: Ionic Liquids. Theory, Properties and New Approaches, INTECH, 2011, pp. 567630. DOI: 10.5772/14529Search in Google Scholar

9. Martínez-Palou, R.: Química en Microondas. CEM Publishing: Mattews, NC, 2006 (E-book).Search in Google Scholar

10. Guzmán, D., Flores, P. and Martínez-Palou, R.: Ionic Liquids as Demulsifiers of Water-in-Crude Oil Emulsions: Study of the Microwave Effect. Energy Fuels24 (2010) 3610. DOI: 10.1021/ef100232fSearch in Google Scholar

11. Goldszal, A. and Bourrel, M.: Demulsification of Crude Oil Emulsions: Correlation to Microemulsion Phase Behavior. Ind. Eng. Chem. Res.39 (2000) 2746. DOI: 10.1021/ef100232fSearch in Google Scholar

12. Web page: http://www.cem.com.Search in Google Scholar

13. Shiraishi, Y., Hirai, T. and Komasawa, I.: Identification of desulfurization products in the photochemical desulfurization process for benzothiophenes and dibenzothiophenes from light oil using an organic two-phase extraction system. Ing. Eng. Chem. Res.38 (1999) 3300. DOI: 10.1021/ie990134pSearch in Google Scholar

14. Klein, R., Touraud, D., and Kunz, W.: Choline carboxylate surfactants; biocompatible and highly soluble in water. Green Chem.10 (2008) 433. DOI: 10.1039/b718466bSearch in Google Scholar

15. Wolf, N. O.: U.S. Patent 4582629, 1986.Search in Google Scholar

16. Xia, L. X., Lu, S. W. and Cao, G. Y.: Stability and demulsification of emulsions stabilized by asphaltenes or resins. J. Colloid Interface Sci.271 (2004) 504. DOI: 10.1016/j.jcis.2003.11.027Search in Google Scholar

17. Nour, A. H. and Yunus, R. M. A.: Stability and Demulsification of Water-in-Crude Oil (w/o) Emulsions Via Microwave Heating. J Appl. Sci.6 (2006) 1698. DOI: 10.3923/jas.2006.1698.1702Search in Google Scholar

18. Nour, A. H. and Yunus, R. M. A.: Continuous Microwave Heating of Water-in-Oil Emulsions: An Experimental Study. J. Appl. Sci.6 (2006) 1868. DOI: 10.3923/jas.2006.1868.1872Search in Google Scholar

19. Nour, A. H. and Yunus, R. M. A.: Comparative Study on Emulsion Demulsification by Microwave Radiation and Conventional Heating. J Appl. Sci.6 (2006) 2307. DOI: 10.3923/jas.2006.2307.2311Search in Google Scholar

20. Nour, A. H., Pang, S. F., Nour, A. H. and Omer, M. S.: Demulsification of Water-in-Crude Oil (W/O) Emulsion by using Microwave Radiation. J Appl. Sci.10 (2010) 2935. DOI: 10.3923/jas.2010.2935.2939Search in Google Scholar

21. Anisa, A. N. I., Nour, A. H. and Nour, A. H.: Destabilization of Heavy and Light Crude Oil Emulsions via Microwave Heating Technology: An Optimization Study. J Appl. Sci.11 (2011) 2898. DOI: 10.3923/jas.2011.2898.2906Search in Google Scholar

22. Fortuny, M., Oliveira, C. B., Melo, R. L., Nele, M., Coutinho, R. C. and Santos, A. F.: Effect of Salinity, Temperature, Water Content, and pH on the Microwave Demulsification of Crude Oil Emulsions. Energy Fuels21 (2007) 1358. DOI: 10.1021/ef0603885Search in Google Scholar

23. Lemos, R. C. B.da Silva, E. B., dos Santos, A., Guimaraes, R. C. L., Ferreira, B. M. S., Guarnieri, R. A., Dariva, C., Franceschi, E., Santos, A. F. and Fortuny, M.: Demulsification of Water-in-Crude Oil Emulsions Using Ionic Liquids and Microwave Irradiation. Energy Fuels24 (2010) 4439. DOI: 10.1021/ef100425vSearch in Google Scholar

24. de la Hoz, A., Diaz-Ortiz, A. and Moreno, A.: Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev.34 (2005) 164. DOI: 10.1039/b411438 hSearch in Google Scholar

25. Perreux, L. and Loupy, A.: A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron57 (2001) 9199. DOI: 10.1016/S0040-4020(01)00905-XSearch in Google Scholar

26. Perreux, L. and Loupy, A.: In: Loupy, A. (Ed.) Microwaves in Organic Synthesis, 2nd Ed., Wiley-VCH, Weinheim, Germany, 2006, pp. 134218. DOI: 10.1002/9783527619559.ch4Search in Google Scholar

27. Kappe, C. O.: Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology. Acc. Chem. Res.46 (2013) 1579. DOI: 10.1021/ar300318cSearch in Google Scholar PubMed

28. Cerón-Camacho, R., Aburto, J., Flores, E. A., Montiel, L. E. and Martínez-Palou, R.: Efficient Microwave-Assisted Synthesis of Ionic Esterified Amino Acids. Molecules16 (2011) 8733. DOI: 10.3390/molecules16108733Search in Google Scholar

Received: 2013-08-08
Revised: 2014-04-28
Published Online: 2014-07-22
Published in Print: 2014-07-15

© 2014, Carl Hanser Publisher, Munich

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110312/pdf?lang=en
Scroll to top button