Preparation and Application of Fluorescent-tagged Inhibitor for Calcium Phosphate and Iron(III) Hydroxide Scales in Industrial Cooling Water Systems
-
Huchuan Wang
, Yuming Zhou , Guangqing Liu , Jingyi Huang , Qingzhao Yao , Shuaishuai Ma , Ke Cao , Yahui Liu , Wendao Wu and Wei Sun
Abstract
In an attempt to control Ca3(PO4)2 and iron(III) scaling in cooling water systems, a water-soluble copolymer, acrylic acid-oxalic acid-allylpolyethoxy carboxylate-8-hydroxy-1,3,6-pyrene trisulfonic acid trisodium salt (pyranine) (AA-APEM-APTA) was examined as an environmentally friendly inhibitor. Structures of APTA, APEM, and AA-APEM-APTA were determined by FT-IR and 1H-NMR. The observation shows that the dosage of AA-APEM-APTA plays an important role on Ca3(PO4)2 inhibition. The performance of copolymer on inhibition of Ca3(PO4)2 precipitation was compared with that of current commercial inhibitors. It was shown that the copolymer exhibited an excellent ability to control inorganic minerals, with approximately 94.7 % Ca3(PO4)2 inhibition. Correlation coefficient R2 of AA-APEM-APTA's is 0.9975. The effect on formation of Ca3(PO4)2 was investigated with combination of scanning electronic microscopy (SEM) and X-ray powder diffraction (XRD) analysis. The polymer had good dispersing ability with respect to iron(III). AA-APEM-APTA can be used to measure accurately polymer consumption on line besides providing excellent Ca3(PO4)2 inhibition and dispersing to iron(III).
Kurzfassung
Für die Kontrolle der Ablagerungen aus Ca3(PO4)2 und Eisen(III)-hydroxid wurde ein umweltfreundlicher Inhibitor, das wasserlösliches Copolymer Acrylsäure-Oxalsäure-Polyallylcarboxylat-8-hydroxy-1,3,6-Pyrentrisulfonsäure-Trinatriumsalz (AA-APEM-APTA) untersucht. Die Strukturen von APTA, APEM und AA-APEM-APTA wurde mittels FT-IR und 1H-NMR bestimmt. Die Untersuchung macht deutlich, dass die Dosis des AA-APEM-APTA bei der Inhibierung des Ca3(PO4)2 eine wichtige Rolle spielt. Die Wirksamkeit des Co-Polymers auf die Inhibierung des Ca3(PO4)2-Niederschlags ist mit der von üblichen, kommerziell erhältlichen Inhibitoren vergleichbar. Es konnte gezeigt werden, dass das Co-Polymer anorganische Mineralien hervorragend kontrollieren kann; die Inhibierung von Ca3(PO4)2 beträgt etwa 94,7 %. Der Korrelationskoeffizient R2 von AA-APEM-nAPTA ist 0,9975. Der Einfluss auf die Entstehung von Ca3(PO4)2 wurde mit Hilfe einer Kombination aus Rasterelektronenmikroskopie (SEM) und Röntgenbeugungsanalyse (XRD) bestimmt. Das Polymer kann Eisen(III) gut dispergieren. AA-APEM-APTA kann verwendet werden, um den Polymerverbrauch on-line genau zu messen.
References
1. Gu, X. X., Qiu, F. X., Zhou, X., Qi, J., Zhou, Y., Yang, D., Guo, Q. and Guo, X. R.: Preparation and application of polymers as inhibitor for calcium carbonate and calcium phosphate scales; Int. J. Polym. Mater. Polym. Biomater.62 (2013) 323. 037.2012.670824. 10.1080/00914Search in Google Scholar
2. Fu, C. E., Zhou, Y. M. and Liu, G. Q.: Novel non-phosphorous antiscalants for inhibition of calcium phosphate and calcium sulfate precipitation; Advanced Mater. Res.233 (2011) 117. 10.4028/www.scientific.net/AMR.233-235.117Search in Google Scholar
3. Atamanenko, I., Kryvoruchko, A., Yurlova, L. and Tsapiuk, E.: Study of the CaSO4 deposits in the presence of scale inhibitors; Desalination147 (2002) 257. 10.1016/S0011-9164(02)00547-7.Search in Google Scholar
4. Luai, M. A-H., Abdul, Q. and Dhawi, A. A.-O.: Calcium sulfate scale deposition on coated carbon steel and titanium; Desalin. Water Treat.51 (2013) 2521. 10.1080/19443994.2012.748963.Search in Google Scholar
5. Liu, F., Lu, X. H., Yang, W., Lu, J. J., Zhong, H. Y., Chang, X. and Zhao, C. C.: Optimizations of inhibitors compounding and applied conditions in simulated circulating cooling water system; Desalination313 (2013) 18. 10.1016/j.desal.2012.11.028.Search in Google Scholar
6. Gu, X. X., Qiu, F. X., Zhou, X., Qi, J., Zhou, Y., Guo, X. R. and Yang, D. Y.: Preparation, characterization, and inhibition efficiency of quadripolymer for use as scale inhibitor; Inter. J. Polym. Analy. Character17 (2012) 321. 10.1080/1023666X.2012.668451.Search in Google Scholar
7. Fu, C. E., Zhou, Y. M., Liu, G. Q., Huang, J. Y., Sun, W. and Wu, W. D.: Inhibition of Ca3(PO4)2, CaCO3, and CaSO4 precipitation for industrial recycling water; Ind. Eng. Chem. Res.50 (2011) 10393. 10.1021/ie200051r.Search in Google Scholar
8. Kjellin, P.: X-ray diffraction and scanning electron microscopy studies of calcium carbonate electrodeposited on a steel surface; Colloids and Surfaces A: Physicochem. Eng. Aspects212 (2003) 19. 10.1016/S0927-7757(02)00296-0.Search in Google Scholar
9. Suharso, Buhani, Syaiful, B. and Teguh, E.: Gambier extracts as an inhibitor of calcium carbonate (CaCO3) scale formation; Desalination265 (2011) 102. 10.1016/j.desal.2010.07.038.Search in Google Scholar
10. Koelmans, A. A., Vander, H. A., Knijff, L. M. and Aalderink, R. H.: Integrated modeling of eutrophication and organic contaminant fate & effects in aquatic ecosystems; Water Res.35(15) (2001) 3517. 10.1016/S0043-1354(01)00095-1.Search in Google Scholar
11. Liu, G. Q., Zhou, Y. M., Huang, J. Y., Yao, Q. Z., Ling, L., Zhang, P. X., Zhong, X. F., Fu, C. E., Wu, W. D., Sun, W. and Hu, Z. J.: Carboxylate-terminated double-hydrophilic block copolymer as an effective and environmentally friendly inhibitor for carbonate and sulfate scales in cooling water systems; Water Air Soil Pollut.223 (2012) 3601. 10.1007/s11270-012-1133-5.Search in Google Scholar
12. Du, K.; Zhou, Y. M. and Wang, Y. Y.: Fluorescent-tagged no phosphate and nitrogen free calcium phosphate scale inhibitor for cooling water systems; J. Appl. Polym. Sci.113 (2009) 1966. 10.1002/app.30213.Search in Google Scholar
13. Du, K., Zhou, Y. M., Dai, L. Y. and Wang, Y. Y.: Preparation and properties of polyether scale inhibitor containing fluorescent groups; Int. J. Polym. Mater.57 (2008) 785. 10.1080/00914030801962988.Search in Google Scholar
14. Solberg, S.Andreassen, K., Clarke, N., Torseth, K., Tveito, O. E., Strand, G. H. and Tomter, S.: The possible influence of nitrogen and acid deposition on forest growth in Norway; Forest Ecol. Manag.192 (2004) 241. 10.1016/j.foreco.2004.01.036.Search in Google Scholar
15. Yuchi, A., Gotoh, Y. and Itoh, S.: Potentiometry of effective concentration of polyacrylate as scale inhibitor; Anal. Chim. Acta594 (2007) 199. 10.1016/j.aca.2007.05.049.Search in Google Scholar PubMed
16. Wu, Z. Q., Meng, L. Z., Li, C., Lu, X. J., Zhang, L. F. and He, Y. B.: Amphiphilic copolymer with pendant pyrenebutyryl hydrazide group: synthesis, characterization, and recognition for carbonate anion; J. Appl. Polym. Sci.101 (2006) 2371. 10.1002/app.23860.Search in Google Scholar
17. Gatti, R. and Lotti, C.: Development and validation of a pre-column reversed phase liquid chromatographic method with fluorescence detection for the determination of primary phenethylamines in dietary supplements and phytoextracts; J. Chromatogr.A 1218 (2011) 4468. 10.1016/j.chroma.2011.05.044.Search in Google Scholar PubMed
18. Martínez-Máñez, R. and Sancenón, F.: Fluorogenic and chromogenic chemosensors and reagents for anions; Chem. Rev.103 (2003) 4419. 10.1021/cr010421e.Search in Google Scholar PubMed
19. Nagai, A., Kokado, K., Miyake, J. and Cyujo, Y.: Thermoresponsive fluorescent water-soluble copolymers containing BODIPY dye: inhibition of H-Aggregation of the BODIPY units in their copolymers by LCST; J. Polym. Sci. Part A: Polym. Chem.48 (2010) 627. 10.1002/pola.23813.Search in Google Scholar
20. Chu, H. C., Lee, Y. H., Hsu, S. J., Yang, P. J., Yabushita, A. and Lin, H. C.: Novel reversible chemosensory material based on conjugated side-chain polymer containing fluorescent pyridyl receptor pendants; J. Phys. Chem.B 115 (2011) 8845. 10.1021/jp201586c.Search in Google Scholar PubMed
21. Morris, J. D., Moriarty, B. E., Wei, M. L., Murray, P. G. and Reddinger, J. L.: U.S. Patent 6645428B1 (2003).Search in Google Scholar
22. Kira, M. and Kobayashi, N.: U.S. Patent 5624995 (1997).Search in Google Scholar
23. Moriarty, B. E., Hoots, J. E., Workman, D. P. and Rasimas, J. P.: U.S. Patent 6312644 (2001).Search in Google Scholar
24. Fu, C., Zhou, Y., Huang, J., Xie, H., Liu, G., Wu, W. and Sun, W.: Preparation and characterization of a phosphorous free and non-nitrogen antiscalant in industrial cooling systems; Tenside Surf. Det.1 (2011) 60. 10.3139/113.110105.Search in Google Scholar
25. Liu, G. Q., Huang, J. Y., Zhou, Y. M., Yao, Q. Z., Ling, L., Zhang, P. X., Fu, C. E., Wu, W. D., Sun, W. and Hu, Z. J.: Acrylic acid-allylpolyethoxy carboxylate copolymer dispersant for calcium carbonate and iron(III) hydroxide scales in cooling water systems; Tenside Surf. Det.3 (2012) 216. 10.3139/113.110185.Search in Google Scholar
26. Liu, G. Q., Huang, J. Y., Zhou, Y. M., Yao, Q. Z., Ling, L., Zhang, P. X., Wang, H. C., Cao, K., Liu, Y. H., Wu, W. D. and Sun, W.: Fluorescent-tagged double-hydrophilic block copolymer as a green inhibitor for calcium carbonate scales; Tenside Surf. Det.5 (2012) 404. 10.3139/113.110210.Search in Google Scholar
27. Richard, R., Byers, G. W. and Leermakers, P. A.: Electronically excited aromatic carbonyl compounds in hydrogen bonding and acidic media; J. Am. Chem. Soc.93(13) (1971) 3263. 10.1021/ja00742a027.Search in Google Scholar
28. Gao, L. J., Feng, J. Y., Jin, B., Zhang, Q. N., Liu, T. Q., Lun, Y. Q. and Wu, Z. J.: Carbazole and hydroxyl groups-tagged poly(aspartic acid) scale inhibitor for cooling water systems; Chem. Lett.40 (2011) 1392. 10.1246/cl.2011.1392.Search in Google Scholar
29. Huang, J. Y., Liu, G. Q., Zhou, Y. M., Yao, Q. Z., Yang, Y., Wang, H. C., Ling, L., Cao, K., Liu, Y. H., Wu, W. D. and Sun, W.: Fluorescent-tagged maleic anhydride-allylpolyethoxy carboxylate copolymer as an environmentally benign inhibitor for calcium phosphate in industrial cooling systems; Polym. Eng. Sci.5 (2013) 1306. 10.1002/pen.23366Search in Google Scholar
30. Tang, Y. M., Yang, W. Z., Yin, X. S., Liu, Y., Yin, P. W. and Wang, J. T.: Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP; Desalination228 (2008) 55. 10.1016/j.desal.2007.08.006.Search in Google Scholar
31. Fu, C. E., Zhou, Y. M., Liu, G. Q., Huang, J. Y., Wu, W. D. and Sun, W.: Int. J. Polym. Mater.61 (2012) 341. /00914037.2011. 584230. 10.1080Search in Google Scholar
32. Rahman, F.: Calcium sulfate precipitation studies with scale inhibitors for reverse osmosis desalination; Desalination319 (2013) 79. 10.1016/j.desal.2013.03.027.Search in Google Scholar
33. Yu, S. H., Colfen, H. and Antonietti, M.: Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures; J. Phys. Chem.B 107 (2003) 7396. 10.1021/jp034009+Search in Google Scholar PubMed
34. Kataoka, K., Ishihara, A. and Harada, A.: Effect of the secondary structure of poly(L-lysine) segments on the micellization in aqueous milieu of poly(ethylene glycol)-poly(L-lysine) block copolymer partially substituted with a hydrocinnamoyl group at the N-position; Macromolecules31 (1998) 6071. 10.1021/ma971838i.Search in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Review Article
- Arginine Based Novel Cationic Surfactants: A Review
- Application
- Selection of Surfactants on the Basis of Foam and Emulsion Properties to Obtain the Fire Fighting Foam and the Degreasing Agent
- Negative Synergistic Effect on Foaming in Body Care Products with Silicone Oil and the Needle-Like Crystal of Ethylene Glycol Distearate
- Technical Chemistry
- Wetting Ability in Aqueous Mixtures of Amine Oxide with Anionic and Nonionic Surfactants
- Environmental Chemistry
- Validation of an HPLC Method for Determining log Pow Values of Surfactants
- Removal of Lead From Aqueous Media Using Carbonized and Acid Treated Orange Peel
- Corrosion and Scale Inhibition Properties by Phosphate-free and Nitrogen-free Scale Inhibitor in Cooling Water System
- Preparation and Application of Fluorescent-tagged Inhibitor for Calcium Phosphate and Iron(III) Hydroxide Scales in Industrial Cooling Water Systems
- Novel Surfactants
- Effect of Tuned Head Polarity of Cetyl Trimethyl Ammonium Bromide on their Physicochemical Properties
- Physical Chemistry
- Aggregation Behavior of PEO-PPO-PEO Tri-Block Copolymer (Pluronic®L64) in Nonionic Surfactant Additives Environment
- Surfactant Processing
- Solidification of Surfactants and Detergents to Dust-Free Free Flowing Pastilles
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Review Article
- Arginine Based Novel Cationic Surfactants: A Review
- Application
- Selection of Surfactants on the Basis of Foam and Emulsion Properties to Obtain the Fire Fighting Foam and the Degreasing Agent
- Negative Synergistic Effect on Foaming in Body Care Products with Silicone Oil and the Needle-Like Crystal of Ethylene Glycol Distearate
- Technical Chemistry
- Wetting Ability in Aqueous Mixtures of Amine Oxide with Anionic and Nonionic Surfactants
- Environmental Chemistry
- Validation of an HPLC Method for Determining log Pow Values of Surfactants
- Removal of Lead From Aqueous Media Using Carbonized and Acid Treated Orange Peel
- Corrosion and Scale Inhibition Properties by Phosphate-free and Nitrogen-free Scale Inhibitor in Cooling Water System
- Preparation and Application of Fluorescent-tagged Inhibitor for Calcium Phosphate and Iron(III) Hydroxide Scales in Industrial Cooling Water Systems
- Novel Surfactants
- Effect of Tuned Head Polarity of Cetyl Trimethyl Ammonium Bromide on their Physicochemical Properties
- Physical Chemistry
- Aggregation Behavior of PEO-PPO-PEO Tri-Block Copolymer (Pluronic®L64) in Nonionic Surfactant Additives Environment
- Surfactant Processing
- Solidification of Surfactants and Detergents to Dust-Free Free Flowing Pastilles