Removal of Lead From Aqueous Media Using Carbonized and Acid Treated Orange Peel
-
Jasmin Shah
, M. Rasul Jan und Atta ul Haq
Abstract
A low cost and environment-friendly agriculture waste material, orange peel, was investigated for the removal and accumulation of Pb(II) from water and wastewater. Orange peel treated with acid (AOP) as well as converted into carbon (COP) and the effect of various parameters on biosorption of Pb(II) on AOP and COP was studied. The biosorption of Pb(II) was found to be pH dependant in both cases and maximum biosorption of Pb(II) (100 %) on AOP was achieved at pH 6 and 60 min shaking time while using COP the maximum biosorption (100 %) was obtained at pH 5.5 and 80 min contact time. The monolayer biosorption capacities of AOP and COP were found to be 1 040 mg g−1 and 993 mg g−1 using Langmuir isotherm at room temperature respectively. Similarly Freundlich empirical constants, KF and n obtained for Pb(II) on AOP and on COP were 0.453 L g−1, 1.90 and 0.334 L g−1, 2.51 respectively. For the kinetic study of biosorption of Pb(II) on AOP and COP pseudo-first-order and pseudo-second-order intraparticle diffusion and Elovich models were applied. The data showed that pseudo-second-order model (R2 = 0.9820) was the best choice among the kinetic models for description of biosorption of lead on AOP and COP. Thermodynamic parameters, the change of free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) of Pb(II) biosorption on AOP and COP were calculated and showed spontaneous endothermic behaviour of Pb(II) biosorption. The effect of interfering ions (Na+, K+, Mg2+, and Ca2+) were also studied on biosorption of Pb(II) on AOP and COP. The concentration of HNO3 solutions were optimized for recovery of Pb(II) after biosorption.
Kurzfassung
Es wurde die Entfernung oder Aufkonzentrierung von Blei aus Wasser oder Abwasser mit Orangenschalen (orange peel = OP), einem preiswerten und umweltfreundlichen Abfall aus der Landwirtschaft, untersucht. Es wurden mit Säure behandelte (AOP) als auch verkohle Orangenschalen (COP) und der Einfluss verschiedener Parameter auf die Biosorption von Pb(II) auf AOP und COP studiert. Die Biosorption von Pb(II) war in beiden Fällen pH-abhängig. Die maximale Biosorption von Pb(II) (100 %) an AOP wurde bei einem pH-Wert von 6 nach 60-minütigem Schütteln erreicht; während sie sich an COP bei pH 5,5 nach 80 Minuten einstellte. Die Biosorptionskapazität für die Monolage betrug für AOP 1 040 mg g−1 und für COP 993 mg g−1 bei Anwendung der Langmuir-Isotherme bei 25 °C. Entsprechend erhielt man für die empirischen Freundlich-Konstanten KF und n für die Adsorption von Pb(II) an AOP 0,453 L g−1 und 1,90 bzw. an COP 0,334 L g−1 und 2,51. Bei der kinetischen Untersuchung der Biosorption von Pb(II) an AOP und COP wurden das Intrapartikel-Diffusionsmodell mit Pseudo-Erster- und Pseudo-Zweiter-Ordnung und das Elovich-Modell angewendet. Das Diffusionsmodell Pseudo-Zweiter- Ordnung lieferte die besten Resultate für die Beschreibung der Biosorption von Pb(II) an AOP und COP (R2 = 0.9820). Die thermodynamischen Parameter ΔG°, ΔH° und ΔS° für die Biosorption von Pb(II) an AOP und COP wurden berechnet; es konnte eine spontanes endothermes Verhalten für die Biosorption bestimmt werden. Des Weiteren wurde der Einfluss von Störionen (Na+, K+, Mg2+, and Ca2+) auf die Biosorption von Pb(II) auf AOP und COP untersucht. Die Konzentration der HNO3-Lösungen für die Rückgewinnung von Pb(II) nach der Biosorption wurde optimiert.
References
1. Perez-Marin, A. B., Meseguer Zapata, V., Ortuno, J. F., Aguilar, M., Saez, J. and Llorens, M.: J. Hazard. Mater.139 (2007) 122–131. 10.1016/j.jhazmat.2006.06.008Suche in Google Scholar PubMed
2. Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A. and Agarwal, S.: RSC Adv.2 (2012) 6380–6388. 10.1039/C2RA20340ESuche in Google Scholar
3. Mouflih, M., Aklil, A., Jahroud, N., Gourai, M. and Sebti, S.: Hydrometallurgy81 (2006) 219–225. 10.1016/j.hydromet.2005.12.011Suche in Google Scholar
4. Singh, C. K., Sahu, J. N., Mahalik, K. K., Mohanty, C. R., Raj Mohan, B. and Meikap, B. C.: J. Hazard. Mater.153 (2008) 221–228. 10.1016/j.jhazmat.2007.08.043Suche in Google Scholar PubMed
5. Singh, V., Tiwari, S., Sharma, A. K. and Sanghi, R.: J. Colloid Interf. Sci.316 (2007) 224–232. 10.1016/j.jcis.2007.07.061Suche in Google Scholar PubMed
6. Yurtsever, M. and Sengil, I. A.: J. Hazard. Materi.163 (2009) 58–64. 10.1016/j.jhazmat.2008.06.077Suche in Google Scholar PubMed
7. Matheickal, J. T. and Yu, Q.: Mineral Eng.10 (1997) 947–957. DOI:08926875197S17.00tO.00. 10.1016/S0892-6875(97)00076-9Suche in Google Scholar
8. Al-Subu, M. M.: Adv. Environm. Res.6 (2002) 569–576. 10.1016/S1093-0191(01)00103-4Suche in Google Scholar
9. Agrawal, A., Sahu, K. K. and Pandey, B. D.: J. Colloid Interf. Sci.281 (2005) 291–298. 10.1016/j.jcis.2004.08.103Suche in Google Scholar PubMed
10. Gupta, S. S. and Bhattacharyya, K. G.: Appl. Clay Sci.30 (2005) 199–208. 10.1016/j.clay.2005.03.008Suche in Google Scholar
11. Vilar, V. J. P., Sebesta, F., Botelho, C. M. S. and Booaventura, R. A. R.: Proc. Biochem.40 (2005) 3276–3284. 10.1016/j.procbio.2005.03.021Suche in Google Scholar
12. Bhattacharjee, S., Chakrabarty, S., Maity, S., Kar, S., Thakur, P. and Bhattacharyya, G.: Water Res.37 (2003) 3954–3966. 10.1016/S0043-1354(03)00315-4Suche in Google Scholar PubMed
13. Saleh, T. A. and Gupta, V. K.: Environ. Sci. Pollut. Res.19 (2012) 1224–1228. DOI:10.1007/s11356-011-0670-6. 10.1007/s11356-011-0670-6Suche in Google Scholar
14. Ayappan, R., Sophia, A. C., Swaminathan, K. and Sandhy, S.: Proc. Biochem.40 (2005) 1293–1299. 10.1016/j.procbio.2004.05.007Suche in Google Scholar
15. Gupta, V. K., Gupta, B., Rasogi, A., Agarwal, S. and Nayak, A. J.: Hazard. Mater.186 (2011) 891–901. 10.1016/j.jhazmat.2010.11.091Suche in Google Scholar PubMed
16. Karthikeyan, S., Gupta, V. K., Boopathy, R., Titus, A. and Sekaran, G.: J Mol. Liq.173 (2012) 153–163. 10.1016/j.molliq.2012.06.022Suche in Google Scholar
17. Amarasinghe, B. M. W. P. K. and Williams, R. A.: Chem. Eng. J.132 (2007) 299–307. 10.1016/j.cej.2007.01.016Suche in Google Scholar
18. Low, K. S., Lee, C. K. and Liew, S. C.: Proc. Biochem.36 (2000) 59–64. PII: S0032–9592(00)00177–1. 10.1016/S0032-9592(00)00177-1Suche in Google Scholar
19. Roy, D., Greenlaw, P. N. and Shane, B. S.: J. Environm. Sci. HealthA 28 (1993) 37–50. 10.1080/10934529309375861Suche in Google Scholar
20. Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J. and Tanada, S.: J. Colloidal Interf. Sci.281 (2005) 56–61. 10.1016/j.jcis.2004.08.083Suche in Google Scholar PubMed
21. Han, R., Zhang, J., Zou, W., Shi, J. and Liu, H.: J. Hazard. Mater.125 (2005) 266–271. 10.1016/j.jhazmat.2005.05.031Suche in Google Scholar PubMed
22. Shukla, S. R. and Pai, R. S.: J. Hazard. Mater.125 (2005) 147–153. 10.1016/j.jhazmat.2005.05.018Suche in Google Scholar PubMed
23. Abdel-Halim, S. H., Shehata, A. M. A. and El-Shahat, M. F.: Water Res.37 (2003) 1678–1683. PII: S 0 0 4 3 – 1 3 5 4 (0 2) 0 0 5 5 4 – 7. 10.1016/S0043-1354(02)00554-7Suche in Google Scholar PubMed
24. Zulkali, M. M. D., Ahmad, A. L.Norulakmal, N. H. and Oryza, S. L.: Bioresour. Technol.97 (2006) 21–25. 10.1016/j.biortech.2005.02.007Suche in Google Scholar PubMed
25. Wong, K. K., Lee, C. K., Low, K. S. and Haron, M. J.: Chemosphere50 (2003) 23–28. PII: S0 0 4 5 – 6 5 35 (0 2)0 05 9 8 – 2. 10.1016/S0045-6535(02)00202-3Suche in Google Scholar
26. Noeline, B. F., Manohar, D. M. and Anirudhan, T. S.: Sep. Purif. Technol.45 (2005) 131–140. 10.1016/j.seppur.2005.03.004Suche in Google Scholar
27. Randall, J. M., Hautala, E. and McDonald, G.: J. Appl. Poly. Sci.22 (1978) 379–387. 10.1002/app.1978.070220207Suche in Google Scholar
28. Ho, Y. S.: Bioresour. Technol.96 (2005) 1292–1296. 10.1016/j.biortech.2004.10.011Suche in Google Scholar PubMed
29. Ho, Y. S., Chiu, W. T., Hsu, C. S. and Huang, C. T.: 2004. Hydrometallurgy73 (2004) 55–61. 10.1016/j.hydromet.2003.07.008Suche in Google Scholar
30. Saeed, A., Iqbal, M. I. and Akhtar, M. W.: J. Hazard. Mater.117 (2005) 65–73. 10.1016/j.jhazmat.2004.09.008Suche in Google Scholar PubMed
31. Lodeiro, P., Barriada, J. L., Herrero, R. and de Vicente, M. E. Sastre: Environm. Poll.142 (2006) 264–273. 10.1016/j.envpol.2005.10.001Suche in Google Scholar PubMed
32. Bulut, Y. and Baysal, Z.: J. Environm Manag.78 (2006) 107–113. 10.1016/j.jenvman.2005.03.010.Suche in Google Scholar PubMed
33. El-Ashtoukhy, E. S. Z., Amin, N. K. and Abdelwahab, O.: Desalination223 (2008) 162–173. 10.1016/j.desal.2007.01.206Suche in Google Scholar
34. Ho, Y. S. and Ofomaja, A. E.: Proc. Biochem.40 (2005) 3455–346. 10.1016/j.procbio.2005.02.017Suche in Google Scholar
35. Ozcan, A. S., Tunali, S., Akar, T. and Ozcan, A.: Desalination244 (2009) 188–198. 10.1016/j.desal.2008.05.023Suche in Google Scholar
36. Gupta, V. K., Mittal, A., Malviya, A. and Mittal, J.: J Colloid Interf. Sci.335 (2009) 24–33. 10.1016/j.jcis.2009.03.056Suche in Google Scholar PubMed
37. Shukla, S. R. and Roshan, S. P.: J. Chem. Technol. Biotech.80 (2005) 176–183. 10.1002/jctb.1176Suche in Google Scholar
38. Garcia-Rosales, G. and Colin-Cruz, A.: J. Environm. Manag.91 (2010) 2079–2086. 10.1016/j.jenvman.2010.06.004Suche in Google Scholar PubMed
39. Schiewer, S. and Balaria, A.: J. Chem. Eng.146 (2009) 211–219. 10.1016/j.cej.2008.05.034Suche in Google Scholar
40. Xuan, Z., Tang, Y., Li, X., Liu, Y. and Luo, F.: Biochem. Eng. J.31 (2006) 160–164. 10.1016/j.bej.2006.07.001Suche in Google Scholar
41. Lugo-Lugo, V., Hernandez-Lopez, S., Barrera-Diaz, C., Urena-Nunez, F. and Bilyeu, B.: J. Hazard. Mater.161 (2009) 1255–1264. 10.1016/j.jhazmat.2008.04.087Suche in Google Scholar PubMed
42. Chuah, T. G., Jamasiah, A., Azni, J., Katayan, S. and Thomas-Choong, S. Y.: Desalination175 (2005) 305–316. i: .desal.2004.10.014. 10.1016/j.desal.2004.10.014Suche in Google Scholar
43. Mondal, M. K.: J. Environm. Manag.90 (2009) 3266–3271. 10.1016/j.jenvman.2009.05.025Suche in Google Scholar PubMed
44. Pavana, F. A., Mazzocato, A. C., Jacquesa, R. A. and Dias, S. L. P.: Biochem. Eng. J.40 (2008) 357–362. 10.1016/j.bej.2008.01.004Suche in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Review Article
- Arginine Based Novel Cationic Surfactants: A Review
- Application
- Selection of Surfactants on the Basis of Foam and Emulsion Properties to Obtain the Fire Fighting Foam and the Degreasing Agent
- Negative Synergistic Effect on Foaming in Body Care Products with Silicone Oil and the Needle-Like Crystal of Ethylene Glycol Distearate
- Technical Chemistry
- Wetting Ability in Aqueous Mixtures of Amine Oxide with Anionic and Nonionic Surfactants
- Environmental Chemistry
- Validation of an HPLC Method for Determining log Pow Values of Surfactants
- Removal of Lead From Aqueous Media Using Carbonized and Acid Treated Orange Peel
- Corrosion and Scale Inhibition Properties by Phosphate-free and Nitrogen-free Scale Inhibitor in Cooling Water System
- Preparation and Application of Fluorescent-tagged Inhibitor for Calcium Phosphate and Iron(III) Hydroxide Scales in Industrial Cooling Water Systems
- Novel Surfactants
- Effect of Tuned Head Polarity of Cetyl Trimethyl Ammonium Bromide on their Physicochemical Properties
- Physical Chemistry
- Aggregation Behavior of PEO-PPO-PEO Tri-Block Copolymer (Pluronic®L64) in Nonionic Surfactant Additives Environment
- Surfactant Processing
- Solidification of Surfactants and Detergents to Dust-Free Free Flowing Pastilles
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Review Article
- Arginine Based Novel Cationic Surfactants: A Review
- Application
- Selection of Surfactants on the Basis of Foam and Emulsion Properties to Obtain the Fire Fighting Foam and the Degreasing Agent
- Negative Synergistic Effect on Foaming in Body Care Products with Silicone Oil and the Needle-Like Crystal of Ethylene Glycol Distearate
- Technical Chemistry
- Wetting Ability in Aqueous Mixtures of Amine Oxide with Anionic and Nonionic Surfactants
- Environmental Chemistry
- Validation of an HPLC Method for Determining log Pow Values of Surfactants
- Removal of Lead From Aqueous Media Using Carbonized and Acid Treated Orange Peel
- Corrosion and Scale Inhibition Properties by Phosphate-free and Nitrogen-free Scale Inhibitor in Cooling Water System
- Preparation and Application of Fluorescent-tagged Inhibitor for Calcium Phosphate and Iron(III) Hydroxide Scales in Industrial Cooling Water Systems
- Novel Surfactants
- Effect of Tuned Head Polarity of Cetyl Trimethyl Ammonium Bromide on their Physicochemical Properties
- Physical Chemistry
- Aggregation Behavior of PEO-PPO-PEO Tri-Block Copolymer (Pluronic®L64) in Nonionic Surfactant Additives Environment
- Surfactant Processing
- Solidification of Surfactants and Detergents to Dust-Free Free Flowing Pastilles