Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
-
Ahmed Yehia
, Khaled E. Yassin , Madeha Shoeib , S. El-Bahrawy und M. Shalaby
Abstract
The dispersion of bioactive glass, (BG), sample was studied using cetyltrimethylammonium bromide (CTAB). An array of experimental techniques like adsorption, Zeta potential and turbidity were used to achieve this goal. Turbidity was used as a parameter to reflect the degree of dispersion where a higher value of turbidity represents higher dispersion efficiency. Dispersion of the BG particles was largely affected by CTAB concentration and the solution pH. Dispersion of the BG particles was increased with increasing of CTAB concentration till the CMC of CTAB is reached. Above the CMC, the BG particles become hydrophilic causing a decrease in glass dispersion. On the other hand, dispersion of the BG particles was affected with the solution pH. It was increased with increasing pH till pH 9. At higher pH, dispersion was decreased where the formation of micelles is favored.
Kurzfassung
Die Dispersion einer bioaktiven Glassprobe (BG) wurde mithilfe von Cetyltrimethylammoniumbromid untersucht. Dazu wurden verschiedene experimentelle Techniken wie Adsorptions-, Zetapotential- und Trübungsmessungen durchgeführt. Die Trübung wurde als ein Parameter für den Dispersionsgrad eingesetzt, wobei gilt, dass bei einer stärkeren Trübung eine höhere Dispersionseffizienz vorliegt. Die Dispersion der BG-Partikel ist stark von der CTAB-Konzentration und von dem pH-Wert der Lösung beeinflusst. Die Dispersion der BG-Partikel nimmt mit steigender CTAB-Konzentration zu, bis die CMC erreicht ist. Oberhalb der CMC, werden die BG-Partikel hydrophil, was eine Abnahme der BG-Dispersion verursacht. Andererseits ist die Dispersion der BG-Partikel vom pH-Wert der Lösung beeinflusst, d.h. sie nimmt mit steigendem pH-Wert bis zum pH 9 zu. Bei höheren pH-Werten nimmt die Dispersion ab und die Bildung von Mizellen wird bevorzugt.
References
1. Giurea, A., Klein, T. J., Chen, A. C., Goomer, R. S., Coutts, R. D. and Akeson, W. H.: Adhesion of Perichondrial Cells to a Polylactic Acid Scaffold, J. Orthop. Res.21 (2003) 584–589. DOI: 10.1016/S0736-0266(02)Suche in Google Scholar
2. Shum, A. W. T. and Mak, A. F. T.: Morphological and Biomechanical Characterization of Poly (glycolic acid) Scaffolds after in vitro Degradation, Polym. Degra. Stab.81 (2003) 141–149. DOI: 10.1016/S0141-3910(03)00083-1Suche in Google Scholar
3. Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T. and Takakura, Y.: Cartilage Regeneration using Mesenchymal Stem Cells and a Three-dimensional Poly-lactic-glycolic Acid (PLGA) Scaffold. Biomaterials26 (2005) 4273–4279. DOI: 10.106/j.biomaterials.2004.10.037Suche in Google Scholar
4. Boccaccini, A. R., Notingher, I., Maquet, V. and Jérôme, R.: Bioresorbable and Bioactive Composite Materials based on Polylactide Foams Filled with and Coated by Bioglass Particles for Tissue Engineering Applications, J. Mater. Sci.: Mater. Med.14 (2003) 443–450. DOI: 10.1023/A:1023266902662Suche in Google Scholar
5. Daniels, A. U., Chang, M. K. O., Andriano, K. P. and Heller, J.: Mechanical Properties of Biodegradable Polymers and Composites Proposed for Internal Fixation of Bone, J. Appl. Biomater.1 (1990) 57–78. DOI: 10.1002/jab.770010109Suche in Google Scholar PubMed
6. Kasuga, T., Ota, Y., Nogami, M. and Abe, Y.: Preparation and Mechanical Properties of Polylactic Acid Composites Containing Hdroxyapatite Fibers. Biomaterials22 (2001) 19–23. DOI: 101016/S0142-9612(00)00091-0Suche in Google Scholar
7. Haiyan, L. and Jiang, C.: Preparation and Characterization of Bioactive and Biodegradable Wollastonite/Poly (D, L-lactic acid) Composite Scaffolds, J. Mater. Sci. Mater. Med.15 (2004) 1089–095. DOI: 10.1023/B:JMSM.0000046390.09540.c2Suche in Google Scholar PubMed
8. Peter, S. J., Lu, L., Kim, D. J. and Mikos, A. G.: Marrow Stromal Osteoblast Function on a Poly (Propylene Fumarate)/β-tricalcium Phosphate Biodegradable Orthopaedic Composite, Biomaterials21 (2000) 1207–1213. DOI: 10.1016/S0142-9612(99)00254-9Suche in Google Scholar PubMed
9. Wei, X. and Jiang, C.: Well-ordered Mesoporous Bioactive Glasses (MBG): A Promising Bioactive Drug Delivery System, J. Contro. Relea.110 (2006) 522–530. DOI: 10.1016/j.jconrel.2005.11.002Suche in Google Scholar PubMed
10. Fathi, M. and Mohammadi, A.: Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant, J. Mater. Process. Technolgy209 (2009) 1385–1391, 2008.03,051. DOI: 10.1016/j.jmatprotecSuche in Google Scholar
11. Yun, H., Park, J., Kim, S.Kim, Y. and Jang, J.: Effect of the pore structure of bioactive glass balls on biocompatibility in vitro and in vivo, Acta Biomater. 7 (2011) 2651–2660. DOI: 10.1016/j.actbio.2011.02.014Suche in Google Scholar PubMed
12. Maquet, V., Boccaccini, A. R., Pravata, L., Notingher, I. and Jerome, R.: Porous Poly ([alpha]-hydroxyacid)/Bioglass Composite Scaffolds for Bone Tissue Engineering. I: Preparation and in vitro Characterization, Biomaterials25 (2004) 4185–4194. DOI: 101016/j.biomaterials.2003.10.082Suche in Google Scholar
13. Yuan, G. and Jiang, C.: Surface Modification of Bioactive Glasses and Preparation of PDLLA/Bioactive Glass Composite Films, J. Biomater. Appl.24 (2009) 119–137. DOI: 10.1177/0885328208094265Suche in Google Scholar PubMed
14. Shafick, H. H. and Saleeb, F. Z.: Adsorption and wetting behavior of precipitated hydroxyapatite and francolite in contact with cationic surfactants, Colloids and Surfaces1 (1980)295–311. DOI: 101016/0166-6622(80)80019-9Suche in Google Scholar
15. Wängnerud, G. and Olofsson, P.: Adsorption isotherms for cationic surfactants on silica determined by in situ ellipsometry, J. Colloid Interface Sc.153 (1992) 392–398. DOI: 10.1016/0021-9797(92)90330-OSuche in Google Scholar
16. Monticone, V., and Treiner, C.: Effect of pH and ionic strength on the adsorption of cetylpyridinium chloride and the coadsorption of phenoxypropanol at a silica water interface, Colloids Surf. A – Physicochem. Eng. Aspects104 (1995) 285–293. DOI: 10.1016/0927-7757(95)03267-5Suche in Google Scholar
17. Paria, S. and Khilar, K. C.: A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Advances in Colloid and Interface Science110 (2004) 75–95. DOI: 10.1016/j.cis.2004.03.001Suche in Google Scholar PubMed
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Inactivation of Human Norovirus by Common Domestic Laundry Procedures
- Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
- Novel/“Green” Surfactants
- Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
- Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
- Micellar Chemistry
- Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
- Physical Chemistry
- Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants
- Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex)
- Synthesis
- Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials
- The Role of Surface Active Agents in Sulfonation of Double Bonds
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Inactivation of Human Norovirus by Common Domestic Laundry Procedures
- Dispersion of Bioactive Glass using Cetyltrimethylammonium Bromide
- Novel/“Green” Surfactants
- Amphiphilic Choline Carboxylates as Demulsifiers of Water-in-Crude Oil Emulsions
- Synthesis and Antitumor and Surface Activity of Novel Tetrachloro Metallate Complexes of Sulfaquinoxaline with Co(II), Cu(II), or Sn(II) Chlorides
- Micellar Chemistry
- Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature
- Physical Chemistry
- Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants
- Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex)
- Synthesis
- Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials
- The Role of Surface Active Agents in Sulfonation of Double Bonds