Startseite Naturwissenschaften Selection of Surfactants on the Basis of Foam and Emulsion Properties to Obtain the Fire Fighting Foam and the Degreasing Agent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Selection of Surfactants on the Basis of Foam and Emulsion Properties to Obtain the Fire Fighting Foam and the Degreasing Agent

  • Joanna Rakowska , Katarzyna Radwan , Zuzanna Ślosorz , Bożenna Porycka und Małgorzata Norman
Veröffentlicht/Copyright: 1. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Colloidal systems containing droplets or bubbles are important for a wide variety of practical products and industrial processes i. e. control of filtration, cleaning emulsions, fire extinguishing foams, preparing foods or formulating personal care products. The study investigates the structure and stability of foam and emulsion obtained from different surfactants used as a potential compounds of fire fighting agent or removal of chemicals. The optical microscope Olympus BX51 (USA) for purpose of structure observation was used. The foamability of micellar surfactant solutions was tested with perforated disc beating method. Emulsions were prepared with 0.05 – 5 % solution of surfactants and diesel oil. The stability was monitored by measuring the volume of separated phases and recorded after 30 min since the homogenization was performed. The foamability as well as emulsion stability of the surfactant solutions depends on the chemical character of compounds.

Kurzfassung

Kolloidale Systeme, die Tröpfchen oder Bläschen enthalten, sind für eine Vielzahl technischer Produkte und Industrieverfahren wie Filtrationskontrolle, Reinigungsemulsionen, Feuerlöschschäumen, Lebensmittelherstellung und Formulierung von Körperpflegeprodukten von Bedeutung. In dieser Studie werden die Struktur und die Stabilität von Schäumen und Emulsionen untersucht, die mit verschiedenen Tensiden erzeugt wurden. Bei den verwendeten Tensiden handelte es sich um potenzielle Verbindungen, die in Feuerlöschmitteln und zur Entfernung von Chemikalien eingesetzt werden können. Die Strukturbeobachtungen erfolgten mit dem optischen Mikroskop Olympus BX51 (USA). Die Schäumbarkeit der mizellaren Tensidlösungen wurde mithilfe der Schlagschaummethode (Lochplatte) untersucht. Die Emulsionen wurden aus 0.05 – 5 %igen Tensidlösungen und Dieselöl hergestellt. Die Stabilität wurde bestimmt, indem man die Volumina der getrennten Phasen 30 Minuten nach Durchführungen der Homogenisierung gemessen hat. Das Schäumvermögen und die Emulsionsstabilität hingen vom chemischen Charakter der Verbindungen ab.


* Correspondence address Dr. Inż. Joanna Rakowska, ul. Nadwiślańska 213, 05-420 Józefów, Poland, Tel.: +48-2 27 69 32 45, E-Mail:

Joanna Rakowska graduated from Warsaw University of Technology. She has a Ph. D. in chemical technology and she is currently a scientific and technical specialist at the Chemical and Fire Testing Department of Scientific and Research Centre of Fire Protection. Her research work is related with characterization and application of extinguishing and neutralizing agents.

Katarzyna Radwan graduated from J. Kochanowski University and she is PhD student at Poznań University of Technology. Since 2009 she has been working as a scientific and technical specialist at the Chemical and Fire Testing Department of Scientific and Research Centre of Fire Protection.

Zuzanna Ślosorz graduated from Poznań University of Technology in 2011. Since then she has been working at Chemical and Fire Testing Department of the Scientific and Research Centre of Fire Protection.

Bożenna Porycka was received her B. Sc. from University of Warsaw – Faculty of Chemistry. She has been working at Chemical and Fire Testing Department of the Scientific and Research Centre of Fire Protection. Her interests are focused on properties and applications of surfactant solutions as extinguishing agents.

Małgorzata Norman graduated from Poznań University of Technology in 2013. She is PhD student at the Faculty of Chemical Technology.


References

1. Tureková, I., Balog, K. and Półka, M.: The efekt fire fighting foams on the environment and fire extinguishing. BiTP27(1) (2012) 2936; http://czytelnia.cnbop.pl/czytelnia/27/292.Suche in Google Scholar

2. Radwan, K. and Rakowska, J.: An analysis of the effectiveness of application of aqueous solutions of foam concentrate mixtures for extinguishing flammable liquid fires. Przem. Chem.90(12) (2011) 21182121.Suche in Google Scholar

3. Szczygieł, R.: Large-area Forest Fires in Poland. BiTP27(1) (2012) 6778; http://czytelnia.cnbop.pl/czytelnia/27/296.Suche in Google Scholar

4. Stacey, R., Piwnicki, J. and Szczygieł, R.: EUFOFINET: European Collaboration To Improve Preparation And Response To Wildfires And Forest Fires In Europe, BiTP32(4) (2013) 5966. 10.12845/bitp.32.4.2013.7Suche in Google Scholar

5. Kielin, A.: Chemical and ecological rescue. Analysis of the action in Cracow at the Powstańców str. Safety and Fire Technique27(1) (2012) 107112; http://czytelnia.cnbop.pl/czytelnia/27/301.Suche in Google Scholar

6. Mizerski, A.: Foams as carriers of chemicals for neutralizing contamination. BiTP31(1) (2013) 8793; http://czytelnia.cnbop.pl/czytelnia/31/354.Suche in Google Scholar

7. Twardochleb, B., Jaszkiewicz, A., Semeniuk, I., Radwan, K. and Rakowska, J.: Effect of anionic surfactants on the properties of the formulations used for removal oil derived substances. Przem. Chem.91(10) (2012) 19181921.Suche in Google Scholar

8. Mazur, R. and Marzec, M.: Assessment of Safety Level in Aspect of 2007–2012 Statistic. Local Emergencies, BiTP31(3) (2013) 4958. 10.12845/bitp.31.3.2013.5Suche in Google Scholar

9. Schroeder, M. (ed.): Była taka akcja…, CNBOP-PIB (Ed) 2012 ISBN: 978-83-61520-13-9.Suche in Google Scholar

10. Fleszer, J., Twardochleb, B. and Rakowska, J.: Effect of the surfactant type on washing properties depending on the way in which the emulsion was produced. Przem Chem.92(10) (2013) 18381841.Suche in Google Scholar

11. Sosnowski, T.: Efekty dynamiczne na powierzchni ciecz-gaz w procesach technologicznych i biomedycznych. Przem. Chem.85(8–9) (2006) 13531355.Suche in Google Scholar

12. Durian, D.Weitz, D. and Pine, D.: Multiple Light–Scattering Probes and foam Structure and Dynamics. Science252(5006) (1991) 686688. 10.1126/science.252.5006.686.Suche in Google Scholar

13. Cohen-Addad, S. and Höler, R.: Bubble dynamics relaxation in aqueous foam probed by multispackle diffusing-wave spectroscopy. Phys. Rev. Lett.86 (2001) 47004703. 10.1103/PhysRevLett.86.4700Suche in Google Scholar

14. Cohen-Addad, S., Höhler, R and Pitois, O.: Flow in Foams and Flowing Foams. Annu. Rev. Fluid Mech.45 (2013) 241267. 10.1146/annurev-fluid-011212-140634.Suche in Google Scholar

15. Rosen, M. and Dahanayake, M.: Industrial utilization of Surfactants, AOCS. Illinois (2000).Suche in Google Scholar

16. Binks, B. and Murakami, R.: Phase inversion of particle-stabilized materials from foams to dry water. Nature Materials5 (2006) 865869. 10.1038/nmat1757.Suche in Google Scholar

17. Al-Bawab, A., Bozeya, A., Friberg, S. and Aiken, P.: Geranyl Acetate Emulsions: Surfactant Association Structures and Stability. Journal of Dispersion Science and Technology31 (2010) 606610. 10.1080/01932690903217783.Suche in Google Scholar

18. Becher, P.: Emulsions: Theory and Practice(3th ed.)American Chemical Society (2001).Suche in Google Scholar

19. Schramm, L.: Emulsions, foams and suspension: Fundamentals and Applications, Wiley (2005). 10.1002/3527606750Suche in Google Scholar

20. Rosen, M. J.: Surfactants and interfacial phenomena, Wiley-Interscience (2005).10.1002/0471670561Suche in Google Scholar

21. Pradhan, M. S., Sarma, D. S. H. Sita Ram and Khilar, K. C.: Stability of aqueous foams with polymer additives: II. Effects of temperature, Journal of Colloid and Interface Science139(2) (1990) 519526. 10.1016/0021-9797(90)90124-7Suche in Google Scholar

22. Bals, A. and Kulozik, U.: The influence of the pore size, the foaming temperature and the viscosity of the continuous phase on the properties of foams produced by membrane foaming, Journal of Membrane Science220(1–2) (2003) 511. 10.1016/S0376-7388(03)00168-6.Suche in Google Scholar

23. Águila-Hernández, J., Trejo, A. and García-Flores, B. E.: Surface tension and foam behaviour of aqueous solutions of blends of three alkanolamines, as a function of temperature, Colloids and Surfaces A: Physicochemical and Engineering Aspects308(1–3) (2007) 3346. 10.1016/j.colsurfa.2007.05.026.Suche in Google Scholar

24. Luz, M. S., Nascimento, A. N. and Oliveira, P. V.: Fast emulsion-based method for simultaneous determination of Co, Cu, Pb and Se incrude oil, gasoline and diesel by graphite furnace atomic absorption spectrometry, Talanta115 (2013) 409413. 10.1016/j.talanta.2013.05.034Suche in Google Scholar PubMed

25. Kundu, P., Agrawal, A., Mateen, H. and Mishra, I. M.: Stability of oil-in-water macro-emulsion with anionic surfactant: Effect of electrolyte sand temperature, Chemical Engineering Science102 (2013) 176185. 10.1016/j.ces.2013.07.050Suche in Google Scholar

26. Biller, E.: U.S. Patent No. 9743012 (1997). Washington, D.C.: U.S. Patent and Trademark Office. 10.1021/ac9703358Suche in Google Scholar PubMed

27. Michael, J.: D. U.S. Patent No. MX/a/2010/004116(2010). Washington, D.C.: U.S. Patent and Trademark Office.Suche in Google Scholar

28. Król, B., Prochaska, K. and Chrzanowski, Ł.: Biodegradability of firefighting foams, Fire Technology48 (2012) 173181. 10.1007/s10694-010-0204-7Suche in Google Scholar

29. European Committee for Standardization. European standard: Surface active agents. Determination of foaming power. Perforated disc beating method. EN 12728:1999.Suche in Google Scholar

Received: 2014-01-30
Revised: 2014-02-24
Published Online: 2013-05-01
Published in Print: 2014-05-15

© 2014, Carl Hanser Publisher, Munich

Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110300/html
Button zum nach oben scrollen