Home Physical Sciences Synthesis and Surface Active Properties of Dimeric Gemini Sulfonate Surfactants
Article
Licensed
Unlicensed Requires Authentication

Synthesis and Surface Active Properties of Dimeric Gemini Sulfonate Surfactants

  • Jinzhou Zhao , Ming Zhou , Xu Wang and Yan Yang
Published/Copyright: May 1, 2013
Become an author with De Gruyter Brill

Abstract

Dimeric Gemini sulfonate surfactants 1,2-di-(2-oxoypropyl sulfonate-3-alkylether- propoxy) ethane were prepared by the reaction of ethylene glycol diglycidyl ether with long-chain alcohols, followed by sulfonation with 1,3-propane sultone. Ethylene glycol ether was synthesized by the reaction of epichlorohydrin with ethylene glycol. The chemical structures of the prepared compounds were confirmed by FTIR, 1H NMR and elementary analysis. With the increasing length of the carbon chain, the values of their CMC initially decreased. The longer alkyl chain is, the higher melting point is. The Krafft point of Gemini sulfonate surfactants was below 0°C and they had good water solubility. These compounds were superior in surface active properties to general sulfonate surfactants SDS. The efficiency of adsorption at the water/air interface (pC20) of these surfactants was very high. Their foaming properties and wetting ability toward a felt chip, and lime-soap dispersing ability were investigated.

Kurzfassung

Dimere Gemini-Sulfonattenside (1,2-Di-(2-oxoypropylsulfonat-3-alkylether-propoxy)ethane) wurden hergestellt, indem man Ethylenglycoldiglycidylether mit langkettigen Alkoholen umsetzte und nachfolgend mit 1,3-Propansulton sulfonierte. Ethylenglykolether wurde durch Reaktion von Epichlorhydrin mit Ethylenglykol synthetisiert. Die chemische Struktur der hergestellten Verbindungen wurde mittels FTIR, 1H-NMR und der Elementaranalyse festgestellt. Mit zunehmender Kohlenstoffkettenlänge nahmen ihre kritischen Mizellbildungskonzentrationen (CMC) zunächst ab. Je länger die Kohlenstoffkettenlänge ist, umso höher ist der Schmelzpunkt. Der Krafft-Punkt der Gemini-Sulfonattenside lag unter 0°C, alle hergestellten Tenside hatten eine gute Wasserlöslichkeit. Die Verbindungen haben im Vergleich zum Natriumdodecylsulfonat (SDS) überlegene oberflächenaktive Eigenschaften. Die Adsorptionsleistung an der Luft-Wasser-Oberfläche (pC20) dieser Tenside ist sehr hoch. Ihre Schaumeigenschaften und ihre Fähigkeit, ein Filzstück zu benetzen und Kalkseife zu dispergieren, wurden untersucht.


Correspondence address Mr. Dr. Ming Zhou, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China, Fax: +86-28-83 03-29 01, E-Mail:

Jinzhou Zhao received his Master's degree in 1985 from the Southwest Petroleum University in Nanchong of the PR China and in the same year worked in the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation at the Southwest Petroleum University. He is a senior specialist in petroleum Engineering with a research field in oil well fracturing and acidizing.

Ming Zhou received his B. Sc., M. Sc. and Ph. D. from the Southwest Petroleum University in Chengdu of the PR China and worked at the School of Materials Science and Engineering at Southwest Petroleum University as a research chemist in 2002, he is an associate professor at the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation. His research field is the synthesis and applications of surfactants and polymers.

Xu Wang received his Master's degree in 1992 from the Southwest Petroleum University and his Doctor's degree in 2001 from the Sichuan University in China. He is a senior specialist in material Engineering with a research field in oifield material.

Yang Yan received his B. Sc., M. Sc. and Ph. D. from the Southwest Petroleum University in Chengdu of the PR China and worked at the School of Materials Science and Engineering at Southwest Petroleum University as a research chemist in 2006, he is an associate professor. Her research field is the synthesis and applications of surfactants.


References

1. Li, X., Hu, Z. Y., Zhu, H. L., Zhao, S. F. and Cao, D. L.: J Surfact Deterg.13 (2010) 353. 10.1007/s11743-010-1188-5Search in Google Scholar

2. Zana, R.: J Colloid Interface Sci.248 (2002) 203. PMid: 16290524; 10.1006/jcis.2001.8104Search in Google Scholar

3. Marcelo, C., Murguı'a, Mariano, D., Cristaldi, AyelenPorto, Jose' and Di Conza, R.: J. Grau, J Surfact Deterg.11 (2008) 41. 10.1007/s11743-007-1052-4Search in Google Scholar

4. Zhou, M., Zhao, J. Z. and Hu, X. Q.: J. Surfact. Deterg.15 (2012) 309. 10.1007/s11743-011-1313-0Search in Google Scholar

5. Magdassi, S., Ben, M. Moshe, Talmon, Y. and Danino, D.: Colloids Surf. A212 (2003) 1. 10.1016/S0927-7757(02)00294-7Search in Google Scholar

6. Du, X., Lu, Y., Li, L., Wang, J. and Yang, Z.: Colloids Surf. A290 (2007) 132. 10.1016/j.colsurfa.2006.05.013Search in Google Scholar

7. Zhou, M., Zhao, J. Z., Liu, J. X. and Yang, Y.: Chinese J. Appl. Chem.28 (2012) 855.Search in Google Scholar

8. Yoshimura, T. and Esumi, K. J.: Colloid Interface Sci.276 (2004) 231. PMid: 15271573; 10.1016/j.jcis.2004.03.045Search in Google Scholar PubMed

9. Petrova, M. and Konstantinova, T. N.: Dyes Pigm.67 (2005) 63. 10.1016/j.dyepig.2004.10.011Search in Google Scholar

10. Zhu, Y. P., Masuyama, A. and Okahara, M.: J. Am Oil Chem. Soc.67 (1990) 459. 10.1007/BF02638962Search in Google Scholar

Received: 2013-03-08
Accepted: 2013-09-17
Published Online: 2013-05-01
Published in Print: 2014-01-20

© 2014, Carl Hanser Publisher, Munich

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110282/pdf?lang=en
Scroll to top button