Effect of Micelles on the Dynamic Surface Tension of Zwitterionic Surfactants
-
C. Delgado
Abstract
The dynamic surface tension of micellar surfactant solutions was measured using the maximum bubble pressure method. The chosen surfactants were carboxy- and sulfo-betaines. At the beginning, surface tension decay curves are consistent with a diffusion-controlled adsorption. However, at long times these curves were analyzed by using the Fainerman model. From these experiments, the rate constants for demicellization were obtained. The micelle dissociation rate constant depends of the surfactant concentration, the concentration dependence is interpreted by Aniansson's theory, and the micelle dissociation constant independent of surfactant concentration was calculated. The rate constants found in this work are of the same order of magnitude as those obtained using classical techniques for fast reactions.
Kurzfassung
Die dynamische Oberflächenspannung von mizellaren oberflächenaktiven Lösungen wurde mittels der Methode des maximalen Blasendrucks gemessen. Die ausgewählten oberflächenaktiven Substanzen waren Carboxyl- und Sulfobetain. Anfangs waren die Abfälle der dynamischen Oberflächenspannung übereinstimmend mit einer diffusionskontrollierten Adsorption. Diese Kurven wurden jedoch in Log-Zeiten mittels des Fainerman-Models analysiert. Aus diesen Versuchen wurde die Ratenkonstante für die Demizellisierung erhalten. Die mizellare Dissoziationskonstante war abhängig von der Konzentration der oberflächenaktiven Substanz. Diese Konzentrationsabhängigkeit wurde nach der Theorie von Aniansson interpretiert und die mizellare Dissoziationskonstante, unabhängig von der Konzentration der oberflächenaktiven Substanz, errechnet. Die Ratenkonstanten weisen dieselbe Größenordnung auf wie diejenigen, die mittels klassischer Methoden für schnelle Reaktionen erhalten werden.
References
1.Ward, A. F. and Tordai, L. J.: Chem. Phys.14(1946)453.10.1063/1.1724167Suche in Google Scholar
2.Patist, A., Oh, S. G., Leung, R. and Shah, D. O.: Colloid Surface A176(2001)3. 10.1016/S0927-7757(00)00610-5Suche in Google Scholar
3.Lang, J., Tondre, C., Zana, R., Bauer, R., Hoffmann, H. and Ulbrich, W. J.: Phys. Chem.79(1975)276. 10.1021/j100570a017Suche in Google Scholar
4.Kato, S.HaradaS. and Sahara, H. J.: Phys. Chem.99(1995)12570. 10.1021/j100033a033Suche in Google Scholar
5.Frindi, M., Michels, B. and Zana, R. J.: Phys. Chem.98(1994)6607. 10.1021/j100077a029Suche in Google Scholar
6.Rillaerts, E. and Joos, P. J.: Phys. Chem.86(1982)3471. 10.1021/j100214a040Suche in Google Scholar
7.Fainerman, V.: Colloids Surf.62(1992)333. 10.1016/0166-6622(92)80059-BSuche in Google Scholar
8.Frese, Ch., Ruppert, S., Schmidt-Lewerkühne, H., Witern, K. P., Eggers, R., Fainerman, V. B. and Miller, R.: Colloids Surf. A293(2004)33. 10.1016/j.colsurfa.2003.11.033Suche in Google Scholar
9.Frese, Ch., Ruppert, S., Sugár, M., Schmidt-Lewerkühne, H., Wittern, K. P., Fainerman, V. B., EggersR. and Miller, R. J.: Colloid Interface Sci.267(2003)465. 10.1016/S0021-9797(03)00614-3Suche in Google Scholar
10.Frese, Ch., Ruppert, S., Schmidt-Lewerkühne, H., Witern, K. P., Eggers, R., Fainerman, V. B., Miller, R.: Phys. Chem. Chem. Phys.6(2004)1592. 10.1039/b313880aSuche in Google Scholar
11.Noskov, B. A.: Adv. Colloid Interface Sci.95(2002)237. 10.1016/S0001-8686(00)00085-3Suche in Google Scholar
12.Danov, K. D., Kralchevsky, P. A., Denkov, N. D., Ananthapadmanabhan, K. P. and Lips, A.: Adv. Colloid Interface Sci.119(2006)1; ibid, 119 (2006) 17. 10.1016/j.cis.2005.09.002Suche in Google Scholar
13.Basheva, E. S., Ganchev, D., Denkov, N. D., Kasuga, K., SatohN. and Tsujii, K.: Langmuir17(2001)969. 10.1021/la001106aSuche in Google Scholar
14.L. Oldenhovede Guertechin, in Handbook of detergents. Part A: Properties, Marcel DekkerNew York. 1999. chapter 2.Suche in Google Scholar
15.Ribera, R. and Velázquez, M. M.: Langmuir15(1999)6686. 10.1021/la990115kSuche in Google Scholar
16.Delgado, C., Merchán, M. D., Velázquez, M. M. and AnayaJ.: Colloids Surf. A.280(2006)17. 10.1016/j.colsurfa.2005.12.058Suche in Google Scholar
17.Lunkenheimer, K., Czichocki, G., Hirte, R. and Barzyk, W.: Colloids Surf. A101(1995)187 and ref. therein. 10.1016/0927-7757(95)03157-9Suche in Google Scholar
18.Zajac, J., Chorro, C., Lindheimer, C. and Partyka, M. S.: Langmuir13(1997)1486. 10.1021/la960926dSuche in Google Scholar
19.Miller, R., Fainerman, V. B., Schano, K. H., HoffmanA. and Heyer, W.: Tenside Surf. Det.34(1997)5.10.1515/tsd-1997-340514Suche in Google Scholar
20.López-Díaz, D., García-Mateos, I. and Velázquez, M. M.: Colloids Surf. A270–271(2005)153.10.1016/j.colsurfa.2005.05.054Suche in Google Scholar
21.Fainerman, B., Makievski, A. V. and Miller, R.: Colloids Surf. A87(1994)61. 10.1016/0927-7757(94)02747-1Suche in Google Scholar
22.Lucassen, J.: Faraday Discuss. Chem. Soc.59(1976)76. 10.1039/dc9755900076Suche in Google Scholar
23.Kamenka, N., Chorro, N., Chevalier, Y., Levy, H. and Zana, R.: Langmuir11(1995)4234. 10.1021/la00011a013Suche in Google Scholar
24.López-Díaz, D., Velázquez, M. M.: unpublished results.Suche in Google Scholar
25.Kresheck, G. C., Hamory, E., Davenport, G. and Scherega, H. J.: Am. Chem. Soc.88(1966)246. 10.1021/ja00954a013Suche in Google Scholar
26.Benion, B. C., Tong, L. K. J., Holmes, L. P. and Eyring, E. M.: J. Phys. Chem.73(1969)3288. 10.1021/j100844a023Suche in Google Scholar
27.Lang, J. and EyringE.M.: J. Polym. Sci.10(1972), 89.10.1002/pol.1972.160100107Suche in Google Scholar
28.Tondre, C., Lang, J. and Zana, R. J.: Colloid Interface Sci.52(1972)372. 10.1016/0021-9797(75)90212-XSuche in Google Scholar
29.MullerN.J.: Phys. Chem.76(1972)3017. 10.1021/j100665a017Suche in Google Scholar
30.Aniansson, E. A. G. and Wall, S. N.: J. Phys. Chem.78(1974)1024. 10.1021/j100603a016Suche in Google Scholar
31.Kamenka, N., Chevalier, Y. and Zana, R.: Langmuir11(1995)3351. 10.1021/la00009a015Suche in Google Scholar
32.Aniansson, E. A. G., Wall, S. N., Almgren, M., Hoffman, H., Kielman, I., Ulbrich, W., Zana, R, Lang, J. and Tondre, C.: J. Phys. Chem.80(1976)905. 10.1021/j100550a001Suche in Google Scholar
© 2006, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Analysis
- Analysis of the Sucrose Fatty Acid Esters by Atmospheric-pressure Ionization MS with Electrospray Ionization Spectrometry
- Application
- Influence of Natural and Synthetic Additives on Calcium Carbonate Precipitation and Crystal Morphology
- Physical Chemistry
- Effect of Micelles on the Dynamic Surface Tension of Zwitterionic Surfactants
- Microemulsions Using Hexaethylene Glycol Mono-n-dodecyl Ether Nonionic Surfactant and Small Amount of Ionic Surfactants
- Synthesis
- Synthesis and Properties of Sugar-Based Gemini Surfactants
- Synthesis and Properties of Al-δ Layered Sodium Disilicate with High Framework Stability
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Analysis
- Analysis of the Sucrose Fatty Acid Esters by Atmospheric-pressure Ionization MS with Electrospray Ionization Spectrometry
- Application
- Influence of Natural and Synthetic Additives on Calcium Carbonate Precipitation and Crystal Morphology
- Physical Chemistry
- Effect of Micelles on the Dynamic Surface Tension of Zwitterionic Surfactants
- Microemulsions Using Hexaethylene Glycol Mono-n-dodecyl Ether Nonionic Surfactant and Small Amount of Ionic Surfactants
- Synthesis
- Synthesis and Properties of Sugar-Based Gemini Surfactants
- Synthesis and Properties of Al-δ Layered Sodium Disilicate with High Framework Stability