Home Effect of Counterions and Temperature on the Association and Partition Balances of Hexadecylpyridinium Halides in Aqueous Solutions
Article
Licensed
Unlicensed Requires Authentication

Effect of Counterions and Temperature on the Association and Partition Balances of Hexadecylpyridinium Halides in Aqueous Solutions

  • J. Oremusová and O. Greksáková
Published/Copyright: May 8, 2013
Become an author with De Gruyter Brill

Abstract

The effect of counterions and temperature on the association (critical micelle concentration, thermodynamics of micellization) and partition balances (experimental partition coefficient) of three quarternary ammonium surfactants (CPX) having a common hexadecylpyridinium cation and different anions (chloride, bromide, iodide) were studied in aqueous solutions at the temperature range 20–50°C, using conductometry, potentiometry, UV spectroscopy and measurement of surface tension. All methods used gave closely similar values for critical micelle concentration. From calculated thermodynamics parameters the process of micellization was found to be spontaneous and exothermic. Experimental partition coefficient of hexadecylpyridinium halides increased from chloride to iodide.

The objective of this work was to check whether surfactant counterions can affect the micellization and partition processes. From the results obtained it seems that the differences found in micellization and partitioning of all compounds studied, may be attributed to the different physicochemical properties of chloride, bromide and iodide anions as their differences in mobility etc.

Kurzfassung

Der Einfluss von Gegenionen und Temperatur auf die Assoziation (kritische Mizellbildungskonzentration, Thermodynamik der Mizellenbildung) und Verteilungsgleichgewichte (experimenteller Verteilungskoeffizient) von drei quaternären Ammoniumtensiden (CPX), mit einem herkömmlichem Hexadecylpyridinium-Kation und verschiedenen Anionen (Chloride, Bromide, Jodide), wurde in wässrigen Lösungen in einem Temperaturbereich von 20–50°C mittels Konduktometrie, Potentiometrie, UV-Spektroskopie und Messung der Oberflächenspannung untersucht. Alle verwendeten Methoden ergaben nahezu ähnliche Werte für die kritische Mizellbildungskonzentration. Aus den berechneten thermodynamischen Parametern wurde ein spontaner und exothermer Prozess der Mizellenbildung gefunden. Der experimentelle Verteilungskoeffizient von Hexadecylpyridiniumhalogeniden steigt vom Chlorid zum Jodid hin an.

Das Ziel dieser Arbeit war es zu überprüfen, ob Tensidgegenionen die Mizellenbildung und den Verteilungsprozeß beeinflussen können. Anhand der erhaltenen Ergebnisse sieht es so aus, als ob die gefundenen Unterschiede in der Mizellenbildung und Partitionierung aller untersuchten Verbindungen den verschiedenen physikalisch chemischen Eigenschaften von Chlorid-, Bro-mid- und Jodidanion, wie ihre Unterschiede in der Beweglichkeit etc., zugeordnet werden können.


1Jarmila Oremusová, Department of Physical Chemistry of Drugs Faculty of Pharmacy, Comenius University Odbojárov 10, 83232 Bratislava, Slovak Republic Fax: +42 12 50 11 71 00 E-mail:

Doc. Dr. Olga Greksáková, PhD. was born in 1937 and obtained her MSc./PhD in chemistry from Comenius University in Bratislava. She works in the Department of the Physical Chemistry of Drugs, Faculty Pharmacy, Comenius University in Bratislava.

Dr. Jarmila Oremusová, PhD. was born in 1959 and obtained her MSc./PhD in Physical and Analytical Chemistry at Slovak Techical University in Bratislava. Now she works in the Department of the Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava.


References

1. Sarapuk, J., Klesczyňska and Róžička-Rozsak, B.: Mol. Biol. Intl.44 (1998) 5560.Search in Google Scholar

2. De Lisi, R., Fisicaro, E. and Milioto, S.: J. Solution Chem.17 (1988) 10151041.10.1007/BF00647799Search in Google Scholar

3. Collins, K. D.: Biophys. J.72 (1997) 6576.10.1016/S0006-3495(97)78647-8Search in Google Scholar

4. Wennerstrom, H. and Lindman, B.: Micelles, Physical Chemistry of surfactant Association, North-Holland Publishing Company, Amsterdam (1979).10.1016/0370-1573(79)90087-5Search in Google Scholar

5. Causi, S., De Lisi, R. and Milioto, S.: J. Sol. Chem.20(4) (1991) 10311058.Search in Google Scholar

6. Skerjanc, J., Kogej, K. and Cerar, J.: Langmuir15 (1999) 50235026.10.1021/la981710+Search in Google Scholar

7. Mehrian, T., De Keizer, A., Korteweg, A. J. and Lyklema, J.: Colloid Surf. A71(3) (1993) 255267.Search in Google Scholar

8. Chung, J. J., Lee, S. W. and Kim, Y. Ch.: Bull. Korean Chem. Soc.13(6) (1992) 647649.Search in Google Scholar

9. Chung, J. J., Lee, S. W. and Choi, J.H.: J. Korean Chem. Soc.37(1) (1993) 4954.Search in Google Scholar

10. Hofmeister, F.: Arch. Exp. Pathol. Pharmacol.24 (1888) 247.Search in Google Scholar

11. Hoffmann, H. and Ulbricht, Y. N. F.: Z. Phys. Chem.106 (1977) 167184.10.1524/zpch.1977.106.3-6.167Search in Google Scholar

12. Molenat, J.: J. Chem. Phys. Phys-Chim. Biol.66(5) (1969) 825833.Search in Google Scholar

13. Sugihara, G. and Hisatomi, M.: J. Colloid interface Sci.219(1) (1999) 3136.Search in Google Scholar

14. Sugihara, G., Nakano, T.-Y., Sulthan, S. B. and Rakshit, A. K.: J. Oleo. Sci.50 (2001) 2934.10.5650/jos.50.29Search in Google Scholar

15. González-Pérez, A., Del CastilloJ. L., Czapkiewicz, J. and Rodríquez, J. R.: J. Phys. Chem.B105 (2001) 17201725.10.1021/jp0022149Search in Google Scholar

16. Galán, J. J., González-Pérez, A., Seijas, J. A., Uriarte, E. and Rodríquez, J. R.: Colloid Polymer Sci.10 (2004) 396404.Search in Google Scholar

17. Chen, L-J., Lin, S-Y and Huang, C-C.: J. Phys. Chem. B102 (1998) 43504354.10.1063/1.2217373Search in Google Scholar

Received: 2005-4-5
Published Online: 2013-05-08
Published in Print: 2005-11-01

© 2005, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.100270/html
Scroll to top button