Home The Ideal Quenching Medium? – Characterisation of Ionic Liquids for Heat Treatment of Metallic Components
Article
Licensed
Unlicensed Requires Authentication

The Ideal Quenching Medium? – Characterisation of Ionic Liquids for Heat Treatment of Metallic Components

  • M. Beck , C. Schmidt , M. Ahrenberg , C. Schick , U. Kragl and O. Keßler
Published/Copyright: October 21, 2013

Abstract

Quenching as a part of heat treatment is an important process in the manufacturing chain of metallic components. One of the most common processes is immersion quenching in vaporising liquids. Unfortunately, this process is affected by the Leidenfrost-phenomenon. This effect can generate inhomogeneous quenching and thus asymmetrical residual stresses and avoidable distortion. In this work, ionic liquids have been investigated as new quenching media, which can be used as baths near room temperature. Aluminium cylinders have been quenched in baths of different ionic liquids with varying water contents and bath temperatures. The time-temperature curves have been recorded and the heat transfer coefficients were determined and compared to quenching in water. Addition of a few percents water to the ionic liquids increases the cooling rate significantly. Even at higher water contents, bubble boiling and convection are predominant and almost no Leidenfrost-effect occurs. This offers a huge potential to accelerate and homogenise immersion quenching.

Kurzfassung

Der Abschreckvorgang als Teil der Wärmebehandlung ist einer der wichtigsten Schritte bei der Herstellung metallischer Bauteile. Dieser wird häufig als ein Tauchabschrecken in verdampfenden Flüssigkeiten durchgeführt. Nachteil dieses Verfahrens ist das Auftreten eines ausgeprägten Leidenfrost-Effekts. Dies ist eine Ursache für inhomogene Abschreckung und dadurch erhöhte asymmetrische Eigenspannungen und vermeidbaren Bauteilverzug. Im Rahmen dieser Arbeit wurden Ionische Flüssigkeiten als neuartige Abschreckmedien untersucht, welche als Abschreckbäder bei bzw. nahe Raumtemperatur betrieben werden können. Zeit-Temperatur-Verläufe der Abschreckvorgänge von Aluminiumzylindern in verschiedenen Ionischen Flüssigkeiten wurden aufgenommen, Wärmeübergangskoeffizienten bestimmt und mit der konventionellen Wasserabschreckung verglichen. Dabei wurden die Badtemperatur und der Wassergehalt dieser neuartigen Abschreckmedien variiert. Es zeigte sich, dass die Abschreckrate der Ionischen Flüssigkeiten durch Zugabe von Wasser stark erhöht werden kann. Selbst bei erhöhten Wassergehalten zeigen solche Mischungen nahezu keinen Leidenfrost-Effekt. Es treten vorrangig Blasensieden und Konvektion auf. Dies deutet auf ein enormes Potenzial zur Beschleunigung und zur Vergleichmäßigung des Tauchabschreckens hin.


5 (Corresponding author/Kontakt)

References

1. Liscic, B.; Tensi, H.; Canale, L. C. F.; Totten, G. E.: Quenching Theory and Technology. 2. Ed., CRC Press, New York, USA, 201010.1201/9781420009163Search in Google Scholar

2. Boyer, H. E.; Cary, P. R.: Quenching and Control of Distortion. 1. Ed., ASM International, Ohio, USA, 1989, p. 1415, 72–73Search in Google Scholar

3. Hammer, K.: Eigenspannungen und Verzug von wärmebehandelten Zahnrädern. Wiss. Zeitschrift der TH Magdeburg15 (1971) 5, p. 479484Search in Google Scholar

4. Kohlmann, R.: Veränderung der Werkstoffeigenschaften von Vergütungsstahl beim Abschrecken mit wässriger Polymerlösung. HTM Haerterei-Techn. Mitt.50 (1995) 2, p. 126131Search in Google Scholar

5. Segerberg, S.: Technical Properties and Toxicity Level of Polymer Quenchants. HTM Haerterei-Techn. Mitt.42 (1987) 1, p. 5054Search in Google Scholar

6. Rath, J.; Lübben, Th.; Hunkel, M.; Hoffmann, F.; Zoch, H. W.: Basic researches about the generation of compressive residual stresses by high speed quenching. HTM J. Heat. Treatm. Mat.64 (2009) 6, p. 338350Search in Google Scholar

7. Bach, F. W.; Schaper, M.; Nürnberger, F.; Krause, C.; Broer, C.: Simulation of quenching by means of spray cooling – H transfer, microstructure and hardness. HTM Z. Werkst. Waermebeh. Fertigung61 (2006) 3, p. 142147Search in Google Scholar

8. Bernard, M.; Van Well, M.; Reimche, W.; Bach, F.-W.: Edge zone hardening of tempering steel by spray quenching – Influence of nozzle arrangement on the hardening result and nondestructive determination of the edge zone hardeness with harmonic-analysis of eddy current signals. HTM Z. Werkst. Waermebeh. Fertigung60 (2005) 3, p. 150157Search in Google Scholar

9. Krause, Chr.; Hassel, T.; Frolov, I.; Gretzki, T.; Kästner, M.; Seewig, J.; Bormann, D.; Bach, F.-W.: A surface layer quench and temper treatment of pinion shafts with water-air-spraycooling. HTM Z. Werkst. Waermebeh. Fertigung63 (2008) 1, p. 2226Search in Google Scholar

10. Eckstein, H.-J.: Technologie der Wärmebehandlung von Stahl. 2. Ed., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1987, p. 219224, 594Search in Google Scholar

11. Edenhofer, B.: An overview of advances in atmosphere and vacuum heat treatment. Heat Treatment of Metals26 (1999) 1, p. 15Search in Google Scholar

12. Hoffmann, F.; Gondesen, B.; Lohrmann, M.; Lübben, Th.; Mayr, P.: Möglichkeiten und Grenzen des Gasabschreckens. HTM Haerterei-Techn. Mitt.53 (1998) 2, p. 8185Search in Google Scholar

13. Clausen, B.; Surm, H.; Hoffmann, F.; Zoch, H.-W.: Effect of high temperature carburizing with hardening after isothermal transformation on distortion of distortion sensitive gears. HTM Z. Werkst. Waermebeh. Fertigung60 (2005) 3, p. 158165Search in Google Scholar

14. Lübben, Th.; Surm, H.; Hoffmann, F.; Mayr, P.: Dimension and shape changes in high pressure gas quenching. HTM Z. Werkst. Waermebeh. Fertigung58 (2003) 2, p. 5160Search in Google Scholar

15. Kleff, J.; Hock, St.; Kellermann, I.; Fleischmann, M.; Küper, A.: High temperature carburization – Influences on distortion behaviour of heavy-duty transmission components. HTM Z. Werkst. Waermebeh. Fertigung60 (2005) 6, p. 311316Search in Google Scholar

16. Volkmuth, J.: Eigenspannungen und Verzug. HTM Haerterei-Techn. Mitt.51 (1996) 3, p. 145154Search in Google Scholar

17. Volkmuth, J.; Hengerer, F.; Slycke, J.; Persson, M.; Lübben, Th.; Grosch, J.; Vetters, H.; Hock, St.; Hoffmann, R.: Computer assisted short-cycle heat treatment for rolling bearing components using novel roller hearth furnaces. HTM Z. Werkst. Waermebeh. Fertigung57 (2002) 3, p. 205212Search in Google Scholar

18. Earle, M. J.; Esperança, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A.: The distillation and volatility of ionic liquids. Nature439 (2006) 7078, p. 83183410.1038/nature04451Search in Google Scholar

19. Esperança, J. M. S. S.; Lopes, J. N. C.; Tariq, M.; Santos, L. M. N. B. F.; Magee, J. W.; Rebelo, L. P. N.: Volatility of aprotic ionic liquids – A review. J. Chem. Eng. Data55 (2010) 1, p. 31210.1021/je900458wSearch in Google Scholar

20. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B.: Thermal properties of imidazolium ionic liquids. Thermochimica Acta357–358 (2000), p. 9710210.1016/S0040-6031(00)00373-7Search in Google Scholar

21. Wasserscheid, P.; Welton, T.: Ionic Liquids in Synthesis. 2. Ed., Wiley-VCH, Weinheim, 200810.1002/9783527621194Search in Google Scholar

22. Schlücker, E.; Wasserscheid, P.: Ionic liquids in mechanical engineering. Ionische Flüssigkeiten in der Maschinentechnik83 (2011) 9, p. 14761484Search in Google Scholar

23. Noda, A.; Hayamizu, K.; Watanabe, M.: Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B105 (2001) 20, p. 4603461010.1021/jp004132qSearch in Google Scholar

24. BASF, Sicherheitsdatenblatt BasionicsTM LQ 01, ID Nr. 30254248/SDS_GEN_DE/DE, BASF SE, Ludwigshafen, Vol. 10, 2013, p. 14Search in Google Scholar

25. Domańska, U.; Laskowska, M.: Phase equilibria and volumetric properties of (1-ethyl-3-methylimidazolium ethylsulfate+alcohol or water) binary systems. J. Sol. Chem.37 (2008) 9, p. 1271128710.1007/s10953-008-9306-ySearch in Google Scholar

26. Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data49 (2004) 4, p. 95496410.1021/je034261aSearch in Google Scholar

27. Lübben, Th.; Bomas, H.; Hougardy, H. P.; Mayr, P.: Beschreibung der Abschreckwirkung flüssiger Abschreckmittel am Beispiel zweier Härteöle. HTM Haerterei-Techn. Mitt.46 (1991), p. 2434Search in Google Scholar

28. Redmann, R.; Keßler, O.: Cooling power characterisation of ultrasonic assisted water quenching of aluminium cylinders. HTM J. Heat. Treatm. Mat.66 (2011) 5, p. 281289Search in Google Scholar

29. Gür, C. H.; Pan, J.: Handbook of Thermal Process Modeling of Steels. 1 Ed., CRC Press, New York, USA, 2008, p. 35210.1201/9781420003581Search in Google Scholar

30. Dubal, G.: Salt bath quenching for minimum distortion. Proc. 6th Int. Conf. QCD, incl. 4th IDE Conf., Sept 12–13, 2012, Chicago, USA. ASM Int. Materials Park, Ohio, USA, 2012, p. 220–230Search in Google Scholar

31. Cuadrado-Prado, S.; Domínguez-Pérez, M.; Rilo, E.; García-Garabal, S.; Segade, L.; Franjo, C.; Cabeza, O.: Experimental measurement of the hygroscopic grade on eight imidazolium based ionic liquids. Fluid Phase Equil.278 (2009) 1–2, p. 364010.1016/j.fluid.2008.12.008Search in Google Scholar

32. Heym, F.; Haber, J.; Korth, W.; Etzold, B. J. M.; Jess, A.: Vapour Pressure of Water in Mixtures with Hydrophilic Ionic Liquids – A Contribution to the Design of Processes for Drying of Gases by Absorption in Ionic Liquids. Chem. Eng. & Technol.33 (2010) 10, p. 1625163410.1002/ceat.201000146Search in Google Scholar

33. Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D.: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry3 (2001) 4, p. 15616410.1039/b103275pSearch in Google Scholar

34. Bernardes, C. E. S.; Minas da Piedade, M. E.; Canongia Lopes, J. N.: The Structure of Aqueous Solutions of a Hydrophilic Ionic Liquid: The Full Concentration Range of 1-Ethyl-3-methylimidazolium Ethylsulfate and Water. J. Phys. Chem. B115 (2011) 9, p. 2067207410.1021/jp1113202Search in Google Scholar PubMed

35. Bonhôte, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M.: Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem.35 (1996) 5, p. 1168117810.1021/ic951325xSearch in Google Scholar PubMed

36. Schöne, S.: Integration des Düsenfeld-Gasabschreckens in den Strangpressprozess von Aluminiumlegierungen. PhD Thesis, University Rostock, 2012, p. 146Search in Google Scholar

37. Ficke, L. E.; Rodríguez, H.; Brennecke, J. F.: Heat capacities and excess enthalpies of 1-ethyl-3-methylimidazolium-based ionic liquids and water. J. Chem. Eng. Data53 (2008) 9, p. 2112211910.1021/je800248wSearch in Google Scholar

38. Fröba, A. P.; Kremer, H.; Leipertz, A.: Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN) 2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. J. Phys. Chem. B112 (2008) 39, p. 124201243010.1021/jp804319aSearch in Google Scholar PubMed

Published Online: 2013-10-21
Published in Print: 2013-10-02

© 2013, Carl Hanser Verlag, München

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/105.110196/html?lang=en
Scroll to top button