Home Bauschinger effect in undercooled 6082 aluminium wrought alloy
Article
Licensed
Unlicensed Requires Authentication

Bauschinger effect in undercooled 6082 aluminium wrought alloy

  • M. Reich and O. Kessler
Published/Copyright: May 2, 2013

Abstract

Finite element method (FEM) modelling can be used to predict residual stresses and distortion during quenching. One part of the necessary constitutive equations covers the strain hardening model (isotropic, kinematic or mixed) for the material in an undercooled state. Therefore, tension and tension / compression tests of undercooled aluminium alloys like EN AW-6082 were performed in a quenching and deformation dilatometer. Samples have been solution annealed and quenched in the dilatometer at a supercritical cooling rate. Immediately after quenching, uniaxial tension or tension / compression tests at varying temperatures have been performed. These experiments allow a study on the influence of the temperature on the Bauschinger effect. The magnitude of the Bauschinger effect was found to decrease with increasing temperature. Finally, the results have been implemented in the material model of the FEM-Software SYSWELD®.

Kurzfassung

Die Finite-Elemente-Methode (FEM) ermöglicht die Vorhersage von Eigenspannungen und Verzug an abgeschreckten Bauteilen. Hierfür ist es notwendig, für den unterkühlten Werkstoff ein isotropes, kinematisches oder aus beiden kombiniertes Verfestigungsgesetz als Teil des Materialmodells zu definieren. Für die Aluminium-Legierung EN AW-6082 wurden dazu Zug- sowie Zug-Druck-Beanspruchungsversuche im Abschreck- und Umformdilatometer durchgeführt, indem Proben zunächst lösungsgeglüht sowie auf eine bestimmte Temperatur abgeschreckt und anschließend sofort einem Beanspruchungszyklus unterworfen wurden. Diese Versuche erlauben, den Einfluss der Temperatur auf den Bauschinger-Effekt zu analysieren. Im Ergebnis konnte eine Reduzierung des Niveaus des Bauschinger-Effekts mit zunehmender Deformationstemperatur ermittelt werden. Abschließend erfolgte eine Implementierung der Ergebnisse in ein Materialmodell der FEM-Software SYSWELD®.


(Corresponding author/Kontakt)

References

1. Lütjens, J.; Heuer, V.; König, F.; Lübben, Th.; Schulze, V.; Trapp, N.: Computer Aided Simulation of Heat treatment (C.A.S.H.) – Part 2: Determination of input data for the simulation of case hardening. HTM Haerterei-Techn. Mitt.61 (2006) 1, p. 1017Search in Google Scholar

2. Şimşir, C.; Gür, C. H.: A simulation of the quenching process for predicting temperature, microstructure and residual stresses. Strojniski Vestnik/J. Mechan. Eng.56 (2010) 2, p. 93103Search in Google Scholar

3. Gür, C. H.; Pan, J.: Handbook of Thermal Process Modeling of Steels. Taylor & Francis, Inc., London, UK, 200910.1201/9781420003581Search in Google Scholar

4. Kessler, O.; Reich, M.: Similarities and differences in heat treatment Simulation of Aluminium alloys and steels. Mat.-wiss. u. Werkstofftechn.40 (2009) 5–6, p. 47347810.1002/mawe.200900479Search in Google Scholar

5. Şimşir, C.; Dalgic, M.; Lübben, Th.; Irretier, A.; Wolff, M.; Zoch, H.-W.: The Bauschinger effect in the supercooled austenite of SAE 52100 steel. Acta Mater.58 (2010) 13, p. 4478449110.1016/j.actamat.2010.04.044Search in Google Scholar

6. Ibrahimbegović, A.; Chorfi, L.: Viscoplasticity model at finite deformations with combined isotropic and kinematic hardening. Comput. Struct.77 (2000) 5, p. 50952510.1016/S0045-7949(99)00232-1Search in Google Scholar

7. Chun, B. K.; Jinn, J. T.; Lee, J. K.: Modeling the Bauschinger effect for sheet metals, part I: Theory. Int. J. Plast.18 (2002) 5–6, p. 57159510.1016/S0749-6419(01)00046-8Search in Google Scholar

8. Bauschinger, J.: Über die Veränderung der Elastizitätsgrenze und der Festigheit des Eisens und Stahls durch Strecken und Quetschen durch Erwärmen und Abkühlen und durch wiederholte Beanspruchung. Mechanisch-technisches Laboratorium, Koeniglichen Hochschule, Muenchen, 1886, p. 1115Search in Google Scholar

9. Han, K.; Van Tyne, C. J.; Levy, B. S.: Effect of strain and strain rate on the Bauschinger effect response of three different steels. Metall. Mater. Trans. A36A (2005) 9, p. 2379238410.1007/s11661-005-0110-7Search in Google Scholar

10. Aran, A.; Demirkol, M.; Karabulut, A.: Bauschinger effect in precipitation-strengthened aluminium alloy 2024. Mater. Sci. Eng.89 (1987) C, p. L35L3910.1016/0025-5416(87)90271-0Search in Google Scholar

11. Jordon, J. B.; Horstemeyer, M. F.; Solanki, K.; Xue, Y.: Damage and stress state influence on the Bauschinger effect in aluminum alloys. Mechanics of Materials39 (2007) 10, p. 92093110.1016/j.mechmat.2007.03.004Search in Google Scholar

12. Caceres, C. H.; Griffiths, J. R.; Reiner, P.: The influence of microstructure on the bauschinger effect in an Al-Si-Mg casting alloy. Acta Mater.44 (1996) 1, p. 152310.1016/1359-6454(95)00171-6Search in Google Scholar

13. Gan, W.: Precipitation and Strengthening in Al-Ge-Si Alloys. PhD Thesis, Ohio State University, Columbus, Ohio, USA, 2005Search in Google Scholar

14. Embury, J. D.: Structural Aspects of the Bauschinger Effect. Materials Forum10 (1987) 1, p. 2732Search in Google Scholar

15. Abel, A.; Muir, H.: Bauschinger Effect and Stacking Fault Energy. Phil. Mag.27 (1973) 3, p. 58559410.1080/14786437308219233Search in Google Scholar

16. Milligan, R. V.; Koo, W. H.; Davidson, T. E.: The Bauschinger Effect in a High-Strength Steel. J. Basic Engin.88 (1966) 2, p. 48048910.1115/1.3645883Search in Google Scholar

17. Welter, G.: Micro- and Macro-Deformations of Metals and Alloys under Longitudinal Impact Loads, part 2. Metallurgia38 (1949), p. 1317Search in Google Scholar

18. Noster, U.; Scholtes, B.: Bauschingereffekt und mechanische Zwillingsbildung der Magnesiumlegierung AZ31. HTM Z. Werkst. Waermebeh. Fertigung58 (2003) 6, p. 322327Search in Google Scholar

19. Scholtes, B.; Voehringer, O.: Untersuchungen zum Bauschingereffekt von Ck 45 in unterschiedlichen Wärmebehandlungszuständen. HTM Haerterei-Techn. Mitt.41 (1986) 5, p. 347354Search in Google Scholar

20. Williams, B. W.; Simha, C. M. H.; Abedrabbo, N.; Mayer, R.; Worswick, M. S.: Effect of anisotropy, kinematic hardening, and strain-rate sensitivity on the predicted axial crush response of hydroformed aluminium alloy tubes. Int. J. Impact Eng.37 (2010) 6, p. 65266110.1016/j.ijimpeng.2009.10.010Search in Google Scholar

21. Proudhon, H.; Poole, W. J.: The bauschinger effect in AA 6111. Proc. 10 th Int. Conf. on Aluminium Alloys, ICAA-10, July 9–13, 2006, Vancouver, Canada, 2006, p. 913–91810.4028/0-87849-408-1.913Search in Google Scholar

22. Ukadgaonker, V. G.; Kulkarni, P. R.: Influence of Temperature on Bauschinger Effect for Aluminium. Indian J. Technol.17 (1979) 3, p. 114117Search in Google Scholar

23. Milkereit, B.; Schick, C.; Kessler, O.: Recording of continuous cooling precipitation diagrams of aluminium alloys. Thermochimica acta492 (2009) 1-2, p. 737810.1016/j.tca.2009.01.027Search in Google Scholar

24. Kessler, O.; Reich, M.: Mechanical properties of an undercooled aluminium alloy Al-0.6Mg-0.7Si. Proc. 15 th Int. Conf. on the Strength of Materials, ICSMA-15, August 16–21, 2009, Dresden, BRD, J. Phys.: Conf. Ser. 240 (2010) 012093Search in Google Scholar

25. Wei, G.: Precipitation and Strengthening in Al-Ge-Si Alloys. PhD Thesis, State University, Ohio, USA, 2005Search in Google Scholar

Published Online: 2013-05-02
Published in Print: 2012-10-01

© 2012, Carl Hanser Verlag, München

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/105.110165/html
Scroll to top button